
Multiparameter Controllers

Henrik Madsen, Pierre-Julien Trombe, Philip Delff

October 2, 2009

Contents

1 Introduction to R and Mysql 3

1.1 A brief guide to SQL . 3

1.2 Basics of SQL . 4

1.3 Modifying Database records 5

1.4 ODBC . 6

1.5 Accessing a MySQL Database 7

2 Data - description and preparation 8

2.1 Data overview . 8

2.2 Detection of errors in data . 8

2.2.1 Outliers . 8

2.2.2 Constant sub-sequences 8

2.3 Resampling and smoothing 9

2.4 Electricity consumption . 9

2.5 District Heating . 11

3 Multivariate statistics 17

3.1 Principal component analysis 17

3.1.1 Heat and cooling demands and electricity consumption 17

3.1.2 Temperature variation throughout the building 17

3.2 Cluster analysis . 19

3.3 ARMAX models . 19

1

3.3.1 An ARMAX model of the atrium room temperature . 20

3.4 Problems and notes . 23

4 Conclusions 26

Bibliography 26

A A tutorial on R and tools to visualize data 27

A.1 Log on to the IMM server . 27

A.2 Starting R . 29

A.3 The R interface . 30

A.4 Importing data from the database 32

A.5 Errors . 33

A.6 Getting information about a time series 34

A.7 Graphics . 35

A.7.1 Graphical setting initialization 35

A.7.2 Plotting a time series 36

A.8 Estimating distribution functions 38

A.9 Filtering a time series with specific days/hours 41

A.10 Saving the session and exiting R 44

2

Chapter 1

Introduction to R and Mysql

While many tasks that used to be performed using relational databases can
be easily implemented in R, there are some situations where using the power
of R nicely complements the capabilities of a relational database. These
latter are used to make working with very large data sets easier. Along with
the increasing volume of data that we acquire and store, relational databases
are gaining popularity among the scientific community.

There are 2 principal ways to connect with databases and R. The first uses
the ODBC (Open DataBase Connectivity) facility available on many com-
puters. The second uses the DBI package of R along with a specialized
package for the particular database needed to be accessed (the correspond-
ing package is called RMYSQL in the case of the present project). Common
rules state that:

• if there is a specialized package available for the database used, the
corresponding DBI-based package may give better performance than
the ODBC approach.

• on the other hand, f one uses a database fr which a specialized package
is not available, using ODBC may be the only option.

1.1 A brief guide to SQL

Since a single server may hold more than one database each with potentially
many tables, and since each table can contain many columns (variables), it
may be useful to examine exactly what is available in a database before

3

starting to work with it. The table below shows some common tasks and
the SQL statements to execute them:

Task SQL Query
Find names of available databases SHOW DATABASES
Find names of tables in a database SHOW TABLES IN database name
Find names of columns in a table SHOW COLUMNS IN table name
Find the types of columns in a table DESCRIBE table name
Change the default database USE database name

When using command-line, each SQL statement must end in a semi-colon
but this is not required when using the RMySQL interface.

1.2 Basics of SQL

The first step to understanding SQL is to realize that, unlike R, it is not
programming language; operations in SQL are performed using individual
queries witout loops or control statements. The most important SQL com-
mand is SELECT. Since queries are performed using single statements, the
syntax of the SELECT command can be quite long:

SELECT column names or field names
FROM table name
WHERE condition
GROUP BY column names
HAVING condition
ORDER BY column (ASC — DESC)
LIMIT offset, count;

Fortunately, most of the clauses in the SELECT statement are optional. In
fact, many queries will simply retrieve all of the data in a particular table
through the following command:

SELECT * FROM table name;

The asterisk (*) means ”all the columns in the tabe”. Alternatively, a
comma-separated list of variables or expressions can be supplied:

SELECT var1, var2, . . .
FROM table name;

4

1.3 Modifying Database records

Though there are many a lot of SQL commands to manipulate data stored in
relational databases, we give special focus to the following ones: UPDATE,
DELETE and DROP. They allow to modify database records. It is worth
noticing that these commands take effect on the database as soon as they
are issued, so it is a good idea to have a backup of the data in the database
before using these commands. But since no backup was possible on the SQL
server at IMM (at least in the beginning), these commands were not used
extensively in the present project but could turn out very useful for other
projects.

To change the values of selected records in a database, the UPDATE com-
mand can be used. The format of the UPDATE statement is:

UPDATE table name SET var=value
WHERE condition
LIMIT n;

To change more than one variable’s value, the var=value specification can be
replaced with a comma-separated list of variable/value pairs. The WHERE
and LIMIT specifications are optional. If a LIMIT specification is provided,
only that many records will be be considered for updating, even if some of
the chosen records will not actually be modified.

To completely remove a record, the DELETE statement can be used. The
basic syntax is as follows:

DELETE FROM table name
WHERE condition
LIMIT n;

Without a WHERE clause, all of the records of the database will be removed,
so this statement should be used with caution. If a LIMIT specification is
provided, it will be based on observations matching the condition of the
WHERE clause, if one is specified.

To completely remove an entire table or database, the DROP statement can
be used:

DROP TABLE table name;

5

or

DROP DATABASE database name;

When using the DROP command, an error will be reported if the table or
database to be droppped does not exist. To avoid this, the IF EXISTS can
be added to the DROP statement as in:

DROP DATABASE IF EXISTS database name;

1.4 ODBC

The ODBC (Open DataBase Connectivity) facility allows access to a variety
of databases through a common interface. In R, the RODBC package, avail-
able from CRAN, is used to access this capability. ODBC was originally
developed on Windows, and the widest variety of ODBC connectors will be
available on that plateform. However, both Linux and Mac OS X also pro-
vide database connectivity through ODBC. If one needs to use a database in
R that is not directly supported, RODBC will probably be the best choice,
as many database manufacturers provide ODBC connectors for their prod-
ucts. The first step in using RODC is to set up a DSN (Data Source Name).
It is a file which is configurated to provide all the necessary information to
connect and access the database: server, username, password, and databae.
The second step consists in loading the RODBC package of R and creating
a connection by simply passing the DSN to the odbcConnect function as
follows:

> library(RODBC)
> con=odbcConnect(’dsn name’)

Additional keywords defining the connection can be provided in the DSN
argument: server,user, password, port and database. For instance:

> con=odbcConnect(’dsn name;password=xxxx;user=immpjt’)

Once the user has got a connection to the ODBC source, the sqlQUery func-
tion allows any valid SQL query to be sent to the connection. This will be the
case even if SQL is not the native language of the underlying database. To
prevent unnecessary resource use, the odbcClose function should be passed
to close any ODBC connection objects when they are no longer needed.

6

1.5 Accessing a MySQL Database

One of the most popular databases used with R is MySQL. This freely
available database (http://mysql.com) runs on a variety of plateforms and
is relatively easy to configure and operate.

The first in accessing the a MySQL database is loading the MySQL pack-
age. This package will automatically load the required DBI package, which
provides a common interface across different databases. Next, the MySQL
driver is loaded vi the dbDriver function, so that the DBI interface will know
what type of database it is communicating with:

> library(RMySQL)
> drv= dbDriver(’MySQL’)

Now, the specifications of the database connection can be provided through
dbConnect function. These include the database name, the database user-
name and password, and the host on which the database is running. Id the
database is running on the same machine as the R session, the hostname
can be omitted. For example, to access a database called ”bldg th”, via
a user name of ”TI user” and a password of ”secret” on the host ”pjtsql-
srv.imm.dtu.dk”, the following call to dbConnect could be used:

> con=dbConnect(drv,dbname=’bldg th’, user=’TI user’
password=’secret’, host=’pjtsqlsrv.imm.dtu.dk’)

The calls to dbDriver and dbConnect need only to be made once for an entire
session. One can close an unused DBI connection object to dbDisconnect.

SQL queries make requests for some or all of the variables in one or more
database tables. In most cases, a single call to dbGetQuery can be used to
send a query to the database. For example, suppose that

> con=dbConnect(con,’SELECT * FROM table name’)

Any valid SQL query can be passed to a database by this method.

7

Chapter 2

Data - description and
preparation

2.1 Data overview

2.2 Detection of errors in data

2.2.1 Outliers

2.2.2 Constant sub-sequences

Data from automatic physical measurements often contain subsequences of
constant measurements. These are depending on the origin of the data likely
to be caused by faulty measurements and must in some cases be removed.
Errors may cause some data loggers to keep reporting the same measurement
while in fact they are not working.

Care must however be taken every time such a subsequence is removed.
A set point for an indoor climate controller can very well be constant for
days, or even never be touched. This could be a bad control strategy but is
unlikely reflecting faulty data loggers.

A tool has been developed to get an overview of the appearance of such
subsequences and to remove them if wished by the user. Figure 2.1 demon-
strates this feature applied on the recorded ambient temperature.

From the plot of the raw data, constant subsequences are easily seen in the
beginning and towards the end of the data, and these have been removed

8

by the designed routine. But moreover, it’s seen that the clear outliers have
also been removed. This may come as a surprise, but is because there are
more than one point, and these outliers are thus constant subsequences too.

2.3 Resampling and smoothing

Once data has been cleaned for outliers and other erroneous behavior, it
needs to be transformed into a representation that can be used in a mul-
tivariate analysis. In such an analysis one measurement should no longer
be thought of as one number in one of the more than 1000 given time se-
ries but rather as one point of as many dimensions as original time series.
Hence the original time series must be synchronized such that they can be
merged into a multivariate time series with one equidistant time stamps. As
an example, consider for instance measurements of a room temperature and
measurements of the ambient temperature forming two separate time series.
Now one wants to estimate the correlation between the two variables. If the
data loggers have recorded with exactly the same frequency and without off-
set, this task is simple. But what is more likely is that the two are recorded
differently with respect to both frequency and offset, and points in the two
time series cannot be directly compared since they are not recorded at the
same time.

Some kind of interpolation can then be applied on one or both of the time
series. In this work, kernel estimation has been applied to re-sample all
measurements. Kernel estimation is a weighted average in a “sliding win-
dow”. The kernel that has been used is the Epanechnikov kernel with a
total width of one hour such that measurements that are more than half an
hour from the point to be estimated are neglected.

2.4 Electricity consumption

Three different time series of electricity consumption have been compared.
Two of them are available from the database, they are Electricity to technical
installations (time series 20), electricity demand for common installations
provided by Dong (time series 981), and manual readings of the electricity
meter (not in database).

The data from Dong and the manual readings were inspected, and no outliers
or suspicious behavior was found. The series from Dong has a sample period

9

of 1 hour, starts the first of August 2007 and ends on August 31, 2008. June
2008 is completely missing,but apart from that no datapoints are missing.
The series is represents power consumption of unit kW. The meter readings
are approximately monthly and represent the cumulative consumption. The
readings are done from the end of June 2007 until the beginning of September
2008.

A plot of the measured electricity consumption (time series 20) is shown in
Figure 2.3. As shown, observations are recorded over about six months, and
contain three periods of missing values of about 15 days each.

Figure 2.4 only shows data from five days making it easier to understand
the diurnal behavior of the series. It is seen that the time series repre-
sents the cumulative consumption. But it seems that every day, some weird
measurements appear.

The periodic jumps before midnight in the measured data from the database
are believed to be errors due to re-calibration. Based on a histogram of
the data, a threshold value (50 kWh) was decided to distinguish between
difference that can be explained by consumption and larger jumps. The
jumps were then removed.

After removing the jumps in this time series, the three different series are
compared in Figure 2.5.

The results are 25-50% less than before removing the outliers. But it is still
far greater than what is read on meters.

This data can be obtained applying the commands:

> fetchTS (20)
> t s 2 0 $ v a e r d i [which (d i f f (t s 2 0 $ v a e r d i) >50)+1] <− NA

The first command fetches the raw data from the database. fetchTS() has
substituted uploadTS() because of the confusing name, but uploadTS()
links to uploadTS() and therefore does the same. The second command
removes all the sudden jumps of more than 50 kWh. In R a missing value
is denoted NA (Not Assigned).

It is seen that the data provided by Dong suggests an electricity consumption
of up to 12 times as much as what the meter readings suggest, and up to 5
times as much as what the measurements from the database suggests.

10

2.5 District Heating

Both a plot of the full time series of district heat demand and an extract is
shown in Figure 2.6. This time series is seen not to have the same periodic
jumps as the electricity.

The data from the database is now compared with the observations manually
read from the meter. These time series are shown in Figure 2.7

These measures are comparable, and they only differ by a factor two in the
last period where data is only available for 8 days from the database.

11

(a) The raw data.

(b) The data after the constant subsequences have been detected and removed.

Figure 2.1 A time series that have been cleaned for constant subsequences.

12

Figure 2.2 The Epanechnikov kernel of width one hour.

Figure 2.3 The electricity demand in the database. Time series 20.

13

Figure 2.4 The electricity demand in the database. The period shown is from 2008-
04-13 to 2008-04-17.

14

(a) Estimates of the daily electricity con-
sumption based on the meter read-
ings and the modified data from the
database.

(b) The proportion between the two time se-
ries where defined.

Figure 2.5 Comparisson of the electricity demands registered in the database and
the meter readings.

(a) The full time series of the district heat-
ing demand.

(b) An extract of the district heating de-
mand. 2007-10-22 to 2007-10-28.

Figure 2.6 District heating demand. Time series 21.

15

(a) Estimates of the daily district heat con-
sumption based on the two different time
series.

(b) The proportion between the two time se-
ries where defined.

Figure 2.7 Comparison of the district heating demands registered in the database
and the meter readings.

16

Chapter 3

Multivariate statistics

3.1 Principal component analysis

3.1.1 Heat and cooling demands and electricity consumption

Principal component analysis (PCA) is a statistical method to analyse corre-
lation of multivariate data. The observed variables compose a basis spanning
the space of the observation. Principal component analysis is a method to
formulate a new basis which components are ordered by their ability to ex-
plain the variance observed in the data. This new basis provide information
about both which variables of major importance in relation to the variance
in the data set and the correlation between the different variables.

Figure 3.1 shows the result of PCA applied on four consumption variables,
namely district heat consumption, electricity consumption of technical in-
stallations, and the electricity consumption by both cooling systems.

3.1.2 Temperature variation throughout the building

Temperatures in the building are expected to be strongly correlated. First,
the mean temperatures in the different rooms are considered in Figure 3.3.

A few mean values a considerably distinct from the rest, and these time
series should be investigated. Rooms with low mean temperatures are es-
pecially room number 103, 313, 433, 436, and those with particularly high
average temperatures are room number 221, 225, and 328. Room 328 is
quite extreme, which is because this is a server room.

17

●●●
●●●●● ●

●

●

●

●●●
●●●

●●●
●●●

●●
●●●●●● ●

●

●

●

●●●
●●●●

●●●●●
●●

●●●●●
●●● ●

●
●

●

●●●●
●●●●●

●●●●
●●●●●●●●●●●●●●●●●●●

●●
●●

●●●●
●●●

● ●

●

●
●

●●●●
●●●●●

●●●
●●

●●●
●●●

●●●
●●●

●●●●●
●●●●

●●●●
●●●

●●●●
●●

●●●

●

●
● ●●●●

●●●●
●●●

●●
●●●

●●
●●

●●
●●●

●●

●
● ●

●●●
●●●

●●●
●●●

●●●
●●●

●●●●●
●●● ●

●

● ●

●●●●
●●●

●●
●●●

●●●
●●●●●

●●●● ●

●

● ●

●●●●
●●●●

●●
●●

●●●
●●●●●

●●●● ●

●

● ●

●●●●
●●●●

●●●●
●●

●●
●●●●

●●●● ●

●

●
●

●●●●
●●

●●
●●●

●●●
●●●

●●●●●
●● ●

● ●

●

●●●●●●
●●●●●●

●●●●●
●●

●●●●●●
●●

●
●

●

●●●●
●●

●
●

●●
●●●

●●●
●●

●●●●●●
●●●

●

● ●
●●●●

●●●
●●

●●
●●

●●
●●●●● ●

●

●
●

●●
●●●●

●●●
● ●

●
●

●

●●●
●●●

●●●●
●●●

●●
●●●

●

● ●

●

●●
●

●

●

●

●●
●●●●●

●●● ●

● ●

●

●●●●
●●●●●

●●●●
●●

● ●

●
●●●●●

●●●
●●●

●●●●
●●

●●●
●●●●

●●●

●

●
●

●●●●●●●●
●●●

●●●
●●●

●●●●●
●●●● ●

●

●

●

●●●●●●
●●●●

●●●●
●●

●●
●●

●●●●
●●●

●●
●● ●

●

●

●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●●
●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●

●●●
●●

●●●
●●

●●●
●●●

●

●

●
●●●

●●
●●

●●●
●●

●●●
●●●

●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●

●●●
●●●

●●
●●

●●
●●●

●●
●●

●

●

●

●
●●

●●
●●

●●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●●●●●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●●
●●

●●●
●●●

●●

●

●

●

●●●
●●●

●●●
●●●

●●●
●●

●●
●●

●●
●●

●●
●●

●●●●●●●●●●●●●●●
●●

●●
●●

●●
●●

●●
●●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●●
●●●

●●●
●

●

●

●

●●●
●●●

●●●
●●●

●●●
●●

●●
●●

●●
●●

●●
●●●

●
●

●●●
●

●●●●●●●●●●●
●●

●●
●●

●●
●●●

●●
●●●

●●
●●●●●●●●●

●●●●●
●●

●●
●●

●●
●●

●●
●●

●

●

●

●●
●●●

●●
●●●

●●
●●

●●
●●

●●
●●

●●
●●

●
●●

●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●
●●●

●●
●●

●●
●●●

●●●
●

●

●

●

●●
●●●

●●●
●●●

●●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●●●

●●●● ●

●

●

● ●●●●●
●●●●●

●●●●
●●

●●●
●●

●●●
●●●

●●●●

●

● ●
●●●

●●●
●●●

●●●
●●●

●●
●●

●●●
●●●

●●●
●

●

● ●
●●●

●●●
●●●

●●●
●●●

●●
●●

●●
●●

●●
●●●●

●●●●
●●●●

● ●

●

●

● ●●●●
●●●●

●●●●
●●

●●
●●

●●
●●●

●●●
●● ●

●

●

●
●●●

●●●
●●●

●●
●●●

●●●
●●●

●●
●●

●●●●
●●●●

●● ●

●

●

● ●●●●●
●●●●

●●●●
●●

●●●
●●●●

●● ●

●

● ●

●●●●●
●●●●●

●●●●
●●●

●●●●
●●●●

● ●

●

● ●

●●●●
●●●●

●●●
●●

●●
●●●

●●●
●●●

●●●
●●●●

●●●●
●●●

●●●●●●●●●
●●●

●●●
●●●

●●●●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●

●●●●●
●●●

●●
●

●

●

●

●●●●
●●●

●●
●●●●

●●
●●

●●
●●●●●●●

●●
●●●●

●●●
●●

●●

●

●

● ●●
●●●

●●●●
●●

●●●
●●

●●●
●●

●●●●●
●●●

●
●●

●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●●
●●●

●●●
●● ●

●

●

●
●●

●●●
●●●●

●●
●●

●●
●●

●●
●●

●●●●●
●●●●●

●
●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●

●●
●●●

●●●●
●●●

●●●●

●

●

●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●

●●●
● ●

●

●

● ●●●●
●●●●

●●●●
●●

●●
●●

●●●●
●●●●

●● ●

●

●

● ●●●●
●●●●

●●●●
●●

●●●
●●●●

●●●●
● ●

●

●

●
●●●●

●●●●
●●●●

●●
●●

●●●
●●●●●

●●●●
●●●

●

●
● ●●●●●

●●●●
●●●●

●●
●●●

●●●●●●●●●●●●●●●●●●●●
●●

●●
●●

●●●
●●

●

●

● ●●●
●●

●●●
●●●●●●

●●
●●●●

●●●●
●● ●

●

●

● ●●●●
●●●●

●●●●
●●

●●●●●●●●●●●●●●●
●●●●●

●●
●●●

●●●●
●●●●

●●● ●

●

●

● ●●●●
●●●●

●●●●
●●

●●●
●●●●●

●●●● ●

●

●
●

●●●
●●●

●●●
●●●

●●●
●●●●

●●●●
● ●

●

● ●

●●●●●
●●●●●

●●●●●
●●●

●●●●
●●●

● ●

●

● ●

●●●●●
●●●●●

●●●●
●●

●●●
●●●

●●
●●●

●●

●

●

● ●●●
●●●

●●●
●●●

●●●
●●●●●●●●●●●●●●●

●●●●
●●●

●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●
●●

●●●
●●●

●●

●

●

● ●●
●●●

●●
●●●

●●●
●●●●●●●●●●●●●●

●●
●●

●●●
●●●

●●● ●

●

●

●
●●●

●●●
●●●

●●●
●●●

●●
●●●

●●
●●●●●

● ●

●

●

●
●●

●●●●
●●●●

●●
●●

●●●
●●

●●
●●●●

●●
●●●●

●●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●●

●●●●
●●●●●

●●●●●
●●

●●●
●●●●

●●
●●●

●●

●

●

●

●●
●●

●●●●
●●●

●●
●●

●●
●

●●●●●
●●

●●
●●●

●●
●●

●●●
●●

●●
●●●●

●●●●●
●●●●●●

●●●●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●●●●
●●● ●

●

●

● ●●●
●●●

●●●
●●●

●●●
●●●●●●●●●●●●●●●●

●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●
●●●

●●●
●●●●

●●
●●

●●
●●●

●●
●●

●●

●

●

●
●●●

●●
●●●

●●
●●●

●●●
●●

●●
●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●●

●●●
●●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●
●●

●●
●●

●●
●●

●●
●

●

●

●

●●
●●

●●
●●

●●
●●

●●
●●●

●●
●●

●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●
●●●●●●●

●●●●●
●●●

●●●●
●●●

●●●●

●

●

●

●●●
●●

●●
●●●

●●
●●

●●
●●●

●●
●●●●

●●●●●●●
●●●●●●●

●●
●●

●●
●●●●●●●●●●●●●●●●

●●
●●

●●
●●

●●
●●●●●

●●
●●●

●●
●●

●●
●●

●●●
●

●

●

●

●●
●●

●●
●●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●●●●●●●●
●●

●●
●●

●●
●●

●

●

●

●●●
●●

●●
●●●

●●
●●

●●●
●●

●●
●●●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●

●●●●●●●●
●●●●●

●●●
●●●

●●●
●●●

●●

●

●

●

●●●
●●●

●●
●●

●●
●●

●●
●●

●●
●●

●●●●
●●●●●

●
●

●
●

●
●●●●●

●●
●

●●●
●●

●●
●●

●
●●●

●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●●
●●●

●●●
●●●●

●

●

●

●●●
●●

●●
●●

●●
●●

●●
●●

●●
●●●

●●
●●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●

●

●

●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●●
●●

●●●
●●●

●●
●●●

●●●
●●

●●●
●●

●●
●●

●●●
●●

●●
●●

●●
●●

●●
●●

●●

●

●

●

●●●
●●

●●●
●●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●

●●
●

●
●●

●
●

●
●

●
●

●
●

●
●

●
●●

●
●

●
●

●
●

●●●●●●
●●

●●●●●
●●

●●●●
●●

●●●●
●●

●●●
●●

●●●
●●
●

●

●

●

●●
●●

●●●
●●

●●
●●

●●
●●

●●
●●

●●●●●
●●●●●●

●●●●●●
●●●●

●●●●●●
●●●●●●●

●●●●●
●●●●

●●
●●●●

●●
●●●●

●●
●●●

●●
●●

●●
●●

●●●
●

●

●

●

●●
●●●

●●●
●●

●●●
●●

●●●
●●

●●
●●●●

●●●●●
●

●●●●●●
●●●

●●
●●

●●●
●●●

● ●

●

●

●

●●
●●

●●●
●●

●●●
●●

●●●
●●

●●
●●●●

●●●●●●●●●●●●●●●●●
●●●●●●

●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●

●●●
●●

●●●
●●

●

●

●

●●●●
●●●

●●
●●●

●●
●●

●●●
●●●

●●●
●●●

● ●

●

●

●
●●●

●●●
●●●

●●●
●●

●●
●●●●

●●
●●●●●

●●●
●●●

●●● ●

●

●

●
●●●

●●●●
●●●

●●
●●

●●
●●

●●
●●●●

●●
●

●

●

● ●●●
●●●●

●●●●
● ●

●

●
●

●●●●
●●●●

●●●●
●●●

●●●
●●●

●●●●
●●●●

●●●●

●

●

● ●●
●●●

●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●●
●●●

●●●●
●●●●

●●●
●●●

●●●●●●●●●●●●●
●●●●

●●●
●●●●●●●●●●●●

●●
●●

●●●
●●●

●●

●

●

●
●●●

●●
●●●

●●●
●●

●●
●●●

●●
●●

●●●●
●●●●●●●

●●●
●●●

●●●
●●●

● ●

●

●

●

●●●
●●●

●●●
●●●

●●
●●

●●
●●●

●●●
●●●

● ●

●

●

● ●●●●
●●●

●●●
●●●

●●
●●

●●●
●●●

●●● ●

●

●
●

●●●
●●●

●●●●
●●●

●●●
●●●

●●●●
●●●

●● ●

●

●
●

●●●●
●●●●

●●●
●●●

●●
●●●

●●●●
●●●●

● ●

●

●
●

●●●●
●●●●

●●●●
●●●●

●●
●●●

●●●●
●●●●

●

●

● ●●
●●●●

●●●●
●●●

●●
●●●

●●●
●●●

●●●
●●●

●●●●
●●●

●●●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●
●●●

●●
●

●

●

● ●●●
●●

●●●
●●

●●
●●

●●●
●●●●●●●●

●●●
●●●●●●

●●●
●●●

●●●● ●

●

●

● ●●●
●●●

●●●
●●

●●
●●

●●
●●●●●

●●
●●

●●
●●

●
●

●
●●●●●●

●●
●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●

●●●
●●●

●

●

●

●●●●
●●●

●●●
●●

●●
●●●

●●
●●●

●●
●●●●●

●●
●●●

●●●●
●●● ●

●

●

● ●●●
●●●

●●●●
●●●

●●
●●

●●●
●●

●●●
●●●

●●●
●●● ●

●

●

● ●●●
●●●

●●●
●●●

●●
●●●

●●●●
●●●●

● ●

●

●
●

●●●●
●●●●

●●●●
●●

●●
●●●●

●●●● ●

●

●
●

●●●●
●●●●

●●●
●●●

●●
●●●●

●●●● ●

●

● ●

●●●●
●●●●

●●●●
●●

●●
●●

●●●●
●●●●●

●

● ●
●●●●

●●●●
●●

●●●●●
●●

●●●
●●●

●●●●

●

● ●
●●●●

●●
●●●●

●●●
●●

●●●●●
●●

●●●
●●●●

●●●●
● ●

●

●

●
●●●●

●●●
●●●

●●●
●●

●●
●●●

●●●●●●
●●●

●●●●
●●●●

● ●

●

●

● ●●●
●●

●●
●●●●

●●●
●●

●●●●
●●

●●●
●●●●

●●●●
● ●

●

●

● ●●●
●●●

●●
●●●

●●●
●●

●●●●
●●

●●●●
●

●
●

●
●●●

●●●
●●

●●●
●●●●

●●●
●●●

●

●

●
●●●

●●
●●●

●●●
●●

●●
●●

●●
●●

●●
●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●●
●

●●●●
●

●●●●●●●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●●
●●●

●●●
●●

●●

●

●

●

●●
●●●

●●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●●
●●●

●●
●●

●

●

●

●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●●
●●

●●●
●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●

●●●
●●

●●

●

●

●
●●

●●
●●●

●●●
●●●

●●●
●●●●

●●●●
●● ●

●

●

●

●●●●●●
●●●●

●●●●
●●

●●
●●

●●●
●●

●●●●
●

●

●
● ●●●

●●●
●●●

●●●●
●●

●●
●●●

●●
●●●

●●●
●●●

●●●
●●●●●

●●●●
●●

●

●

● ●●●●
●●●

●●
●●

●●●
●●●

●●●
●●

●●●●●●
●●

●●●●
●●●

●●● ●

●

●

● ●●
●●

●●●
●●●

●●
●●

●●
●●

●●
●●

●●
●

●
●

●
●

●
●

●
●●

●●
●●

●●●
●●●●

●●●
●● ●

●

●

● ●●●●
●●●

●●●
●●●

●●
●●

●●
●●

●
●

●●
●

●●
●●

●●
●●

●●
●●

●●●●
●●●●

●● ●

●

●

●
●●●●

●●●
●●●

●●●●
●●●

●●●●
●●●●

● ●

●

● ●

●●●●
●●●●

●●
●●●●

●●
●●

●●●●
●●●● ●

●

● ●

●●●●●
●●●●●

●●●●
●●●

●●
●●●●

●●●●
●●

●
● ●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●●●●

●●●●
●●

●

●
●

●●
●●

●●
●●

●●●
●●

●●●
●●●●

●●●● ●

●

● ●

●●●●
●●●●

●●●●
●●

●●●●
●●●● ●

●
●

●

●●●●
●●●●

●●●●
●●●

●●
●●●●

●●●●
● ●

●

● ●

●●●●
●●●●

●●●●
●●

●●●
●●●●

●●●●
● ●

●

●
●

●●●
●●●●

●●●●
●●

●●
●●●●●

●●
●●●

●●●●
●●●●

● ●

●

●

●
●●●

●●●●
●●●●

●●
●●

●●
●●●●

●●●●
●●

●

● ●
●●●

●●●●●
●●●●

●●
●●

●●●●
●●

●●●
●●

●●●
●●●

●●●●
●●●

●●●●
●●●●

●●●
●●

●

●

● ●●●●
●●●●

●●●
●●●

●●●
●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●●

●●●●
●●●●

●●●

●

●

●

●●●●
●●●

●●
●●●

●●
●●

●●
●●

●●
●●

●
●

●
●

●
●

●
●

●●●●●●
●●

●●●●
●●●

●●● ●

●

●

●
●●●

●●●
●●●

●●●
●●

●●●
●●

●●
●●

●●
●

●
●

●
●

●
●

●
●

●
●●●

●●●
●●●

●●●
● ●

●

●

●
●●●

●●●
●●●

●●●
●●

●●
●●

●●
●●

●●
●●

●
●

●
●

●
●

●●
●●●●●●

●●
●●●

●●●
●●●●

●● ●

●

●

●

● ●●●●
●●●

●●
●●

●●●
●●●

●●
●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●
●●●●●

●●●●●●
●●

●●●●
●●

●●●
●●●

●●●●
●●●

●

●

●

● ●●
●●

●●
●●

●●
●●●

●●
●●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●●

●●
●●●

●●
●●

●●
●●●

●●●
●●

●●●
●●

●●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●

●

●

● ●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●●

●●
●●

●●
●●●

●●
●●●

●●●
●●

●●●
●●●

●●
●●

●●
●●

●●
●●

●●●
●●

●●●
●●

●

●

●

● ●●
●●

●●
●●●

●●
●●

●●
●●

●●
●●

●●
●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●●●●●

●●●●
●●●●●●

●
●

●●●●●
●●

●●●●
●

●●
●

●●
●●

●
●●

●●
●●

●●●
●●

●●●
●●

●

●

●

● ●●
●●●

●●
●●●

●●
●●

●●
●●

●●
●

●●
●

●
●

●
●

●
●

●
●

●●
●●●

●●●●
●●●

●●● ●

●

●

●
●●

●●●
●●●●

●●
●●

●●●
●●

●●
●●

●●
●●

●
●

●
●

●
●●●

●●●
●●●

●●●●
●

●

●

●
●●●

●●●
●●

●●
●●

●●●
●●

●●
●●

●
●

●●
●

●
●

●
●

●
●●●

●●●●
●●●●

●●●● ●

●

●

● ●●●
●●●

●●●●
●●●

●●
●●●

●●
●●●●

●●●
●●●●

●●●●
● ●

●

●

●

●●●●
●●●●

●●●●
●●●●

●●●
●●●●

●●●●
●●

●
● ●

●●●●
●●●●●●●

●●●
●●●

●●
●●●●●

●●●●●

●
● ●

●●●●
●●●●

●●●●
●●●●

●●●
●●●●●

●● ●

●
●

●

● ●●●●
●●●●●

●●●●●
●●●

●●●●●
●●● ●

● ●

●

●●●●●
●●●●

●●●●●
●●

●●●●●
●●●●●●

●●●●●
●●●● ●

● ●

●

●●●●●
●●●●●

●●
●●●●●

●●●●●●
●●●●●

●●●● ●

●
●

●

●●●●
●●●●●

●●●●
●●

●●●●●
●●●●●●

●●●●●
●●● ●

●

●
●

●●●●
●●●●●

●●●●●
●●●

●●●●●
●●●●●●

●●●●●
●●●●

● ●
●

●●●●●
●●●●●

●●●
●●●

●●●●
●●●

●●●
●●●●●

●●●
●●●●●

●●●●●
●●●●●

●●●●
●●

●

●
● ●●●●

●●●●
●●●

●●
●●●

●●●●●
●●●

●●●●●
●●●●

●●●●●
●●●●

●● ●

●

●
●

●●●●
●●●●●

●●●●●
●●

●●●●
●●●●

●●●●●
●●●●

●●●●
● ●

●

●
●

●●●
●●●●

●●●●
●●

●●●
●●

●●
●●

●●
●●

●●
●●

●●●
●●●●●

●●●●●
●●●●●

●●●●
●● ●

●

●

●
●●●●

●●●●
●●●

●●
●●●

●●●
●●●●●

●●●●●●
●●●●●

●●● ●

●

● ●
● ●●●●●

●●●●●
●●●

●●
●●●●●

●●●●●
●●●●

●●●●
●● ●

●

● ●

●●●●
●●●●

●●●●
●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●

●●●●●
●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●

●●●●
●●●●

●

●

●

●

● ●●●●●
●●●●●

●●●●
●●●●

●●●●
●●●●●

●●●●●
●●●●

●●●●●●
●●●●●

●●●●●●
●●●●●●

●●●●●●●
●●●●●●●

●●●●●●●
●●●●●●

●●●●●
●

●

●

●

● ●●●●●●
●●●●●●

●●
●●●●●●

●●●●●●
●●●●●●

● ●

●
●

●

●●●●●●
●●●●●

●●
●●●●●

●●●●●
●●●●●

●●●● ●

● ●

●

●●●●●●
●●●●●

●●●
●●●●

●●●●●●●●
●●●● ●

●
●

●

●●●●●●
●●●●●●

●●●●
●●

●●●
●●

●●
●●

●●●
●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●

●●●●●● ●

●

● ●

●●●●●●●
●●●●●●

●●●
●●●●●

●●●●●●
●●● ●

●
●

●

● ●●●●●●●●
●●●●

●●
●●●

●●●●●●●●
●●●●●●

●●●●●
●●●●●●

●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●
●●●●

●

●

●

● ●●●●●●●●
●●●●●●

●●
●●●

●●●●●●●
●●●●●●●

●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●
●●●●●●●●

●●●
●

●

●

● ●●●●●●●●●
●●●

●●●●●●●●
● ●

●

●

●

●●●●●●●●
●●

●●●●●●●●
●●●●●● ●

●

●

●

●●●●●●●
●●●●●●●

●●
●●●●●●●●●● ● ●

●

●

●●●●●●●●●●
●●

●●●●●●●
●●●●●●● ● ●

●

●

●●●●●●●●
●●●

●●●●●●●●● ●
●

●

●

●●●●●●●●●●
●●●●●●●●

●●●
●●●●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●

●

●

● ●●●●●●●●●
●●●●●●●●

●●
●●

●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●
●

●

● ●●●●●
●●●●●●

●●
●

●
●

●
●

●
●

●
●

●
●

●●●
●●●●●●●●●●●●●●●●●● ●

●

●

●

● ●●●●●●●●●●●●
●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●●●●●●●●●●●●●●●●●● ●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

PC 1

P
C

 2

−4 −2 0 2

−
3

−
2

−
1

0
1

2
3

1

2

3

4

1: Dist. heat
2: El. Tech. inst.
3: El. cool sys 2
4: El. cool sys 1

da
y

of
 y

ea
r

0
10

0
20

0
30

0
36

5

Figure 3.1 The data transformed with PCA. The green arrows are the directions of
the four original variables. The legend lists these ranked by angle from
the (1,0) (straight right) and against the clock. The color

Figure 3.4 shows the first ten principal components’ ability to explain the
variance of the room temperatures measured by the TAC system.

The percentages shown over the components are the cumulative share of
variance described. It is seen that the first principal component explains
more than half of the variance, and that the two first components explain
62%. It is therefore very relevant to investigate how the different time series
influence on these two components. The observations projected into the
plane spanned by the two first components are shown in Figure 3.5. First of
all, it is seen that most of the room temperatures are positively correlated
in the first component. This is as expected. The first principle component
can be interpreted as the mean of most of the room temperatures.

Secondly, some rooms almost do not influence on the first principal compo-
nent. These are especially rooms 102, 103, and 313 which were all found to
have average temperatures below the 95% confidence interval for the aver-
age room temperatures. These rooms are not only cooler than the others,
they also seem to be controlled differently. Rooms 433 and 436 were also
remarked as relatively cool rooms from Figure 3.3. Even though room 433

18

PC 1 PC 2 PC 3 PC 4
Component

S
ha

re
 o

f t
ot

al
 v

ar
ia

nc
e

ex
pl

ai
ne

d
0.

0
0.

2
0.

4
0.

6

Figure 3.2 Test figure 2

does not have a large influence on the first component, it does not seem
particularly interesting in relation to the second component either. Finally,
it may come as a surprise that the particularly warm rooms - and especially
room 328 - do not distinct in the two first principal components.

Figure 3.6 shows a biplot where the observations are projected onto the third
and fourth principal components.

3.2 Cluster analysis

3.3 ARMAX models

Autoregressive Moving Average processes with eXogenous inputs (ARMAX)
are random processes that are linearly dependent on both history of the
processes themselves, the errors commited by the model, and on other pro-
cesses [?]. For short notation, an armax model is denoted by the order of
each model part. The order denotes the number of lags (historical sampling
periods) the process depend on. E.g. an armax model depending on two

19

Figure 3.3 The mean room temperatures with emperical confidence intervals.

lags of the process’ own state, one lag of the prediction error, and three lags
of an exogenous process is denoted an ARMAX(2,1,3) model (having six
parameters in total).

Since this group of models can have several parameters, care must be taken
not to overfit data. Overfitting refers to fitting data better than what the
model physically explains. By estimateing the parameters in such models
recursively, this problem is overcome because future observations are never
used for predictions from which the residuals are calculated.

Moreover, the estimation can be done adaptively. The weight function used
in the estimation is exponentially decaying with age of data. Hence, changes
in the system behaviour will lead to changes in the parameter estimates. Ex-
ponential smoothing adds another parameter to the model, i.e. the forgetting
factor.

3.3.1 An ARMAX model of the atrium room temperature

The measured room temperature is shown in the upper part of Figure 3.7.
Except for four holes of around 15 days each, 10 months of measurements

20

Figure 3.4 The variance of the room temperatures explained by the 10 first principal
components.

are available. All room temperatures are between 20 and 25 degrees, and
they seem to be a little higher at summer than winter. This is as expected.

In the lower plot, the position of the heating valve, the calculated and the
measured supply temperature, and the ambient temperature are shown. The
position of the heating valve should be interpreted as how open the valve is,
from 0 to 100%. At a first look at the heating valve position, the behavior
seems to be very different in the period October 2007 to mid-April 2008
from the rest of the considered period. In this sub-period, the variance of
the valve position is much smaller, the position only varying a few percents.
In the rest of the considered period it the position changes rapidly between
0 and approximately 50% or between approximately 50% and 1. Looking
at the temperature graphs, this change of behavior could be a result of
some temperature- dependent control. This in itself may be inappropriate
since the variance of the room temperature also seem to be larger when the
position of the heating valve fluctuates more.

Different models have been tried, and the best performing one was an AR-
MAX(2,1,2) with the heat valve position as the only exogenous process. The
upper plot in Figure 3.8 shows the residuals of this model applied on the

21

Figure 3.5 A biplot of the two first principal components. The black points are the
room temperature series projected into the two first principal compo-
nents. The red room numbers represent the different time series aver-
age directions and lengths in the plane spanned by the two first principal
components.

room temperature in the atrium. Moreover, an adaptively estimated normal
confidence interval is plotted, and red marks are shown in the bottom when
the residuals exceed the confidence interval [?]. It may be surprising that
apparently many more than 0.005% of the observations exceed the confi-
dence interval. The confidence interval is based on the assumption of the
errors following the normal distribution which is a bad assumption. Espe-
cially because of rapidly changing effects, i.e. heating or ventilation changes,
or maybe even errors in data.

From this, one can identify where the system rapidly changes behaviour
causing residual outliers. In the lower plot in Figure 3.8 the trace of the pa-
rameter estimates are shown. One must have in mind that these parameter
estimates are multiplied with explanatory variables of different magnitudes.
The size of the estimate can therefore not be interpreted as their influence
on the predictions.

Next step from this example is to investigate the control of the heating

22

Figure 3.6 A biplot of the third and the fourth principal components. The black
points are the room temperature series projected into these two compo-
nents. The red room numbers represent the different time series average
directions and lengths in the plane spanned by the conidered components.

valve position to see if a more appropriate control strategy could be used.
Moreover, other control variables should be investigated where the position
of the heating valve does not seem to explain the outliers.

3.4 Problems and notes

23

Figure 3.7 First, the room temperature which is modelled, then some possible ex-
planatory variables.

24

Figure 3.8 Top: Residuals for the ARMAX model and a prediction interval. The
observations exceeding this interval are marked with red at the bottom
axis. In the bottom plot, the parameter estimates are tracked. When
large prediction errors are committed, the parameter estimates change
more.

25

Chapter 4

Conclusions

26

Appendix A

A tutorial on R and tools to
visualize data

This tutorial provides a brief introduction to R (www.cran.r-project.org)
and some R functions developed to visualize data and export graphics in
the framework of the “Multiparameter Controllers” project.

Since the programs are running in connection with a copy of the database
hosted on a server at IMM-DTU, one first needs to log on to the IMM server
via the ThinLinc client which is used to virtualize desktops. The application
file to install it can be freely downloaded at www.cendio.com.

A.1 Log on to the IMM server

Once the ThinLinc Client has been installed and started (the startup inter-
face is seen in Figure A.1), the user must enter:

• the server name: thinlinc.imm.dtu.dk

• a name/login

• a password

It takes a few seconds to log on to the IMM-DTU server. If everything works
correctly, a window virtualizing a UNIX desktop environment is opened
(Figure A.2).

27

http://www.cran.r-project.org/
http://www.cendio.com/downloads/clients

Figure A.1 ThinLinc client login.

Figure A.2 Unix desktop environment.

The user can easily switch from the virtual UNIX desktop to the desktop of
his current operating system by pressing the windows key on his keyboard
and then minimizing the virtual windows or by turning the ”full screen”
mode off (Figure A.3).

The user accounts relevant to the project have been equipped with a folder
called “MultiParamContr” (Figure A.4). It contains different sub-folders
with different purposes. One is called ”common” and is maintained by Pierre-
Julien and Philip. Don’t save anything in it since you will probably lose it

28

Figure A.3 Minimizing the Unix session.

when the directory is updated. In ”common/doc” you will find the docu-
mentation related to the project (this tutorial, descriptions of data, etc).

Figure A.4 The folder used for the Multiparameter Controllers project.

To reach the file system at IMM from a Windows PC, one can use WinSCP
(www.winscp.net). It’s an easy-to-use client, similar to many ftp clients.
Connect to thinlinc.imm.dtu.dk with the same login as when using Thinlinc.

A.2 Starting R

It is straight forward to start R. First, the user opens a hms1 terminal
window in the list of available terminal windows (Figure A.5).

29

http://winscp.net/eng/download.php

Figure A.5 Starting a terminal. Notice that it must be on hms1.

Now, in the hms1 terminal window, type “Rmultiparam”. This a script
made to set up the necessary environment to work with the data and R
functions created for that. The command will result in both opening the
file the user uses to save his command lines (in a separate window) and R
starting (Figure A.6).

A.3 The R interface

R is an advanced collection of software for numeric mathematical modeling
and statistics. It can produce graphics of very high quality. To get started
with R, one can have a look at one or more of the following:

• http://cran.r-project.org/doc/manuals/R-intro.html The official howto.

• Another R introduction.

• http://cran.r-project.org/doc/contrib/Verzani-SimpleR.pdf Another howto
with a lot of nice features.

Technically, R is an expression language which means that the user has to
write command lines to call functions and to create object/variables. If a

30

http://cran.r-project.org/doc/manuals/R-intro.html
http://cran.r-project.org/doc/contrib/Owen-TheRGuide.pdf
http://cran.r-project.org/doc/contrib/Verzani-SimpleR.pdf

Figure A.6 R is launched with the ”Rmultiparam” command taking care of the
initialization.

command is not complete at the end of a line, R will give a different prompt
(instead of the usual ”>”), by default ”+” on second and subsequent lines
and continue to read input until the command is syntactically complete.

Remark: R provides a mechanism for recalling and re-executing previous
commands. The vertical arrow keys on the keyboard can be used to scroll
forward and backward through a command history. Once a command is
located in this way, the cursor can be moved within the command using the
horizontal arrow keys, and commands can be modified.

To create a vector, one can use the c() function. For instance:

> c (2 , 5 , 6)
[1] 2 5 6

There are 2 ways to define a sequence of numbers: for instance, c(1,2,3,4,5)
can be summarized as c(1:5), or just 1:5. In the following, this notation
will be used.

31

A.4 Importing data from the database

To extract data from the database and import them into the R environ-
ment, a function called fetchTS() has been created. It takes the following
arguments:

id.ts A number (or a vector of numbers) corresponding to a time series
identification number in the database.

sync (optional) If sync=TRUE, kernel smoothing will be applied to the time
series. This ensures that different time series will share time stamps.
Notice that smoothing is also low-pass filtering. This means that fast
dynamics are damped.

The user can import one time series at a time,

> fetchTS (991)
Time s e r i e s 991 has been s u c c e s s f u l l y imported
> fetchTS (434)
Time s e r i e s 434 has been s u c c e s s f u l l y imported
> fetchTS (73)
Time s e r i e s 73 has been s u c c e s s f u l l y imported

Or many time series at a time using the operator c() to create a vector of
identification numbers:

> fetchTS (c (991 ,434 ,73 ,74 ,78 ,79 ,22 ,25))
Time s e r i e s 991 has been s u c c e s s f u l l y imported
Time s e r i e s 434 has been s u c c e s s f u l l y imported
Time s e r i e s 73 has been s u c c e s s f u l l y imported
Time s e r i e s 74 has been s u c c e s s f u l l y imported
Time s e r i e s 78 has been s u c c e s s f u l l y imported
Time s e r i e s 79 has been s u c c e s s f u l l y imported
Time s e r i e s 22 has been s u c c e s s f u l l y imported
Time s e r i e s 25 has been s u c c e s s f u l l y imported

Remark: the serial order of the identification numbers does not matter, for
each time series imported, a confirmation statement informs the user that
the operation has succeeded, there is no restriction on the number of time
series (= length of the vector) to be imported but the user must be informed
that if too many time series (> 30) have been imported, it can significantly
affect/slow down the performance of the software.

32

A list of the time series already imported into the R environment can be
obtained by calling the listTS() function which does not take any argu-
ments:
> l i s t T S ()

Time s e r i e s a l r eady imported in to the R environment :
22 19780−0100−KØC1−EM1 FORBR IDAG LOG X
25 19780−0100−KØC2−EM1 FORBR IDAG LOG X
434 19780−0103−VEN3−IRR324−RT01 LOG X
73 19780−0100−VEN2−VI1 P LOG X
74 19780−0100−VEN2−VU1 P LOG X
78 19780−0100−VEN3−MK1 LOG X
79 19780−0100−VEN3−MK2 LOG X
991 1243031 temp

>

Invoking listTS() generates a list of time series which can be identified by
the combination of the number and the name defined in the database.

It is possible to remove a time series which will not be used any longer in
the session by invoking the removeTS() function in the same way as the
fetchTS() function:
> removeTS (c (73 ,434))
> l i s t T S ()

Time s e r i e s a l r eady imported in to the R environment :
22 19780−0100−KØC1−EM1 FORBR IDAG LOG X
25 19780−0100−KØC2−EM1 FORBR IDAG LOG X
74 19780−0100−VEN2−VU1 P LOG X
78 19780−0100−VEN3−MK1 LOG X
79 19780−0100−VEN3−MK2 LOG X
991 1243031 temp

>
>removeTS(−1)
>l i s t T S ()
>

Remark: By passing -1 as an argument, the removeTS() removes any time
series previously imported

A.5 Errors

If there is no time series in the database corresponding to the identification
number in the arguments, an error message is returned:

33

> fetchTS (1200)
Error in typeTS (id . maal , id . tac , id . dong , id . i k . l og)

ERROR: i d e n t i f i c a t i o n number 1200 i s not c o r r e c t
>

If there is an error in the syntax of the command line (the user forgets to
call the vector operator c() when importing many time series at a time for
instance), an error message will be generated by the program:

> fetchTS (991 ,434 ,73 ,74 ,78 ,79 ,22 ,25)
Error in fetchTS (991 ,434 ,73 ,74 ,78 ,79 ,22 ,25)

unused argument (s) (434 ,73 ,74 ,78 ,79 ,22 ,25)
>

A.6 Getting information about a time series

Basic statistics are provided by the function, summaryTS(). A basic example:

> summaryTS(c (80 ,87 ,93))

N. obs N. hours s . p . [min] Mean Median sd <15 <19
>26 >28

80 74922 311 5 2 .50 0 .00 8 .46 0 .955 0 .965
0 .024 0 .022

87 74922 311 5 25 .31 0 .00 39 .07 0 .645 0 .667
0 .303 0 .292

93 74922 311 5 10 .03 8 .97 5 .91 0 .764 0 .929
0 .009 0 .000

N.obs is the number of considered observations, N.hours is the number of
hours over which the observations are spanning. s.p. is ”sample period”,
and the unit is minutes. Mean, median and standard deviation then follow
before the fractions of the observations that are less than or greater than
different values. The default fractions shown are ”less than 15”, ”less than
19”, ”greater than 26”, and ”greater than 28”. These can be specified with
the ”lt” (less than) and ”gt” (greater than) options.

> summaryTS(c (93 ,80 ,87) , l t=c (21) , gt=c (31))

N. obs N. hours s . p . [min] Mean Median sd <21 >31
80 74922 311 5 2 .50 0 .00 8 .46 0 .969 0 .019
87 74922 311 5 25 .31 0 .00 39 .07 0 .678 0 .278
93 74922 311 5 10 .03 8 .97 5 .91 0 .963 0 .000

34

Remark: The output from summaryTS() may be too wide to fit the R
console and will therefore split into more lines which can be confusing. If
needed, the width used by the R console can be changed to for instance 100
characters (default is 80) with the command

> opt ions (width =100)

The output can also be written to a “comma-seperated values” (csv) file
which can be imported to other software. This is done with the option csv
which must be assigned with a string.

> summaryTS(c (93 ,80 ,87) , l t=c (21) , gt=c (31) , csv = ’ ’ c s v f i l e . csv ’ ’)

A.7 Graphics

Generating graphics is a multifold procedure. The user first initializes graph-
ical settings such as the number of sub-windows and the titles/ X axis labels
/ Y axis labels for each sub-window. Then, the user defines the time series
to be plotted, a time interval and whether he wants to save the graphic as
a JPEG file.

A.7.1 Graphical setting initialization

Invoking the ‘‘optgraphTS()’’ function requires several arguments to be
passed in the right order:

nb.wind The number of sub-windows of the plot.

title A title for each sub-window (a character string or a vector of char-
acter string).

X.label X axis label for each sub-window (a character string or a vector of
character string).

Y.label Y axis label for each sub-window (a character string or a vector of
character string).

Below come a few examples (lines starting with # are comments):

35

1 window , no t i t l e , no l a b e l
> opt <− optgraphTS (1 ,”” ,”” ,””)
2 sub−windows , no t i t l e , no l a b e l
> opt <− optgraphTS (2 ,”” ,”” ,””)
1 window , t i t l e & both X and Y l a b e l s
> opt <− optgraphTS (1 ,” Apr i l 2008” ,”Time” ,” Temperature ”)
2 sub−windows , same t i t l e & l a b e l s f o r both windows
> opt <− optgraphTS (2 ,” Apr i l 2008” ,”Time” ,” Temperature ”)
2 sub−windows , same t i t l e & X l a b e l s but d i f f e r e n t Y l a b e l s
> opt <− optgraphTS (2 ,” Apr i l 2008” ,”Time” , c (” Temperature ” ,”

Humidity ”))

A.7.2 Plotting a time series

Generating graphics requires to call the graphTS() function and pass the
following arguments:

id.ts a time series identification number (or a vector of identification num-
bers), the user has to make sure that the time series corresponding to
that/those number(s) has/have already been imported into the R en-
vironment (via the fetchTS() function).

nb.wind The number of sub-windows of the plot (it has to be the same as
in the optgraphTS() function).

ts.wind A vector of integers which represent the windows in which the time
series will be plottet. Eg, if plotting three different time series, and
the first one should be plottet alone in the first plot, and the other
two together in the second, use ts.wind=c(1,2,2).

interval a vector of time interval of the form c(yyyymmdd,yyyymmdd)

– c(0,0): default time interval, plot the time series from 1 July 2007
to 31 October 2008.

– c(20080501,20080501): plot the time series over 1 May 2008.

– c(20080501,20080531): plot the time series from 1 to 31 May
2008.

opt The name of the object which contains the graphical settings (allocated
by calling the optgraphTS function).

36

saveGraph Set equal to TRUE (save the graph as a jpeg file) or FALSE (do
not save any graph).

grid If set to TRUE, a grid will be drawn in the figure.

legendpos By default, the position of the legend is calculated from the
plot and tried to be put at the right border of the plot. If this fails,
the user can in stead use legendpos = "string", where string is one
of "bottomright", "bottom", "bottomleft", "left", "topleft",
"top", "topright", "right". The legend will then be put inside
the plot but at the border at the position described by the string.

yaxt In some cases, the ordinate axis is not well rendered. In such case, try
setting this option to “axis”.

Some restrictions have been set up:

• The number of windows is limited to 4 (nb wind < 4).

• The number of time series to be plotted per sub-window is limited to
10.

Below come a few examples:
> opt 1 <− optgraphTS (1 ,”” ,”” ,””)
> graphTS (434 ,1 , 1 , c (0 , 0) , opt 1 ,T)

> opt 2 <− optgraphTS (1 ,”Room 324 (TAC Measurements) ” ,” Year
2008” ,” Temperature ”)

> graphTS (434 ,1 , 1 , c (20080424 ,20080430) , opt 2 ,T)

> opt 3 <− optgraphTS (1 ,”Room 324 (TAC vs . IK Measurements) ” ,”
Year 2008” ,” Temperature ”)

> graphTS (c (991 ,434) ,1 , c (1 , 1) , c (20080424 ,20080430) , opt 3 ,T)

> opt 4 <− optgraphTS (4 , c (”Room 324 (TAC vs . IK Measurements)
” ,”” ,”” ,””) , ”Year 2008” , c (” Temperature ” ,”” ,”” ,””))

> graphTS (c (991 ,434 ,73 ,74 ,79 ,78 ,25 ,22) ,4 , c (1 , 1 , 2 , 2 , 3 , 3 , 4 , 4) , c
(20080424 ,20080428) , opt 4 ,T)

> opt 5 <− optgraphTS (3 , c (”VEN3−MV1” ,”VEN3−RV1” ,”VEN3−UT1”)
,”24−28 Apr i l 2008” ,””)

> graphTS (c (80 ,87 ,93) ,3 , c (1 , 2 , 3) , c (20080424 ,20080428) , opt 5 ,T)

Listing A.1 An example of plotting three time series in three different figures. The
range of interest is narrowed down. The resulting figure is seen in
Figure A.11

37

Figure A.7 Resulting graph from the first example on the use of graphTS().

The name of the generated graphic file is a combination of the identification
number and the time interval. For instance:

Function call Name of the saved file
optgraphTS(434,1,1,c(0,0),opt 1,S) fig 434 20070701 20081101.jpeg
optgraphTS(c(434,991),1,c(1,1),c(0,0),
opt 1,S) fig 434 991 20070701 20081101.jpeg
optgraphTS(c(434,991,22),2,c(1,1,2),
c(0,0),opt 1,S) fig 434 991 22 20070701 20081101.jpeg
optgraphTS(c(434,991,22),2,c(1,1,2),
c(20080424,20080428),opt 1,S) fig 434 991 22 20080424 20080428.jpeg

To display graphics files, click on the Home Folder icon on the left hand side
of the bin icon and the path: /home/??/MultiParamContr/graphs (”??”
stands for the login name of the user, ”pdel” in Figure A.4 for instance).

A.8 Estimating distribution functions

You may want to have a more complete view of the distributions of the
data in a time series. For this, you can use the cdfTS() function. It uses

38

Figure A.8

the ”opt” argument like graphTS(). So, first the title and axis labels are
defined. These graphical parameters must be provided when generating a
plot. Here for time series 21:

> opt cd f <− optgraphTS (1 ,” Estimated CDF f o r time s e r i e s 21” ,
”Consumption ” , ”P(C<c) ”)

> fetchTS (21)
> cdfTS (21 , opt=opt cd f)

Listing A.2 Estimating the cumulative distribution function for time series 21 and
plotting it. Plot shown in Figure A.13.

The function takes the following optional arguments:

savename If present, the plot will be written to a jpeg file in /MultiParamContr/graphs/
with the name given, appended with .jpeg if needed.

start The lower value of the range of interest. This can be useful if outliers
are present in the lower region.

end The upper value of the range of interest. This can be useful if outliers
are present in the higher region.

39

Figure A.9

step The distance between the values of the explanatory variable for which
the cdf is estimated.

interval As for the function graphTS(), the time interval that must be
considered. c(0,0) is default and means the full period.

nb.sub Number of windows (like in graphTS()). Default is 1.

ts.wind A vector describing in which windows the different time series will
be plotted. The default is that all are plotted in the first window.

An example with two time series and some more options used:

> opt cd f2 <− optgraphTS (1 ,” Estimated CDF f o r time s e r i e s 21 and
991” ,

”Consumption ” , ”P(C<c) ”)
> cdfTS (id . t s=c (21 ,991) , nb . sub=1, t s . wind=c (1 , 1) , s t a r t =10, s tep =1,

end=25, opt=opt cdf2 , savename=”cd f 21 991 ”)

Listing A.3 The CDF’s of two different time series are estimated and plotted
together. The resulting plot is seen in Figure A.14

40

Figure A.10

A.9 Filtering a time series with specific days/hours

filterTS() is a function to strip a time series to only include observations
from specific time of week and day. Default is Monday to Friday from 8 a.m.
to 5 p.m. To obtain this for the time series number 21 and 991, just type:

> f i l t e r T S (c (21 ,991))

However, two options, days and hours, control the filtering and can be ad-
justed by the user. Notice that for days, day 1 is Monday, while day 6 is
Saturday, and day 0 is Sunday. Regarding hours, the hours given are the
hours numbers. For instance hours=16 corresponds to the time period from
4 p.m. to 5 p.m.

To filter on Tuesdays, from 10 a.m. to 11 a.m:

> f i l t e r T S (c (21 ,991) , days=c (2) , hours=c (10))

To filter on Sundays and Mondays, from 3 a.m. to 4 a.m:

> f i l t e r T S (c (21 ,991) , days=c (0 , 1) , hours=c (3))

41

Figure A.11 Figure produced with the code in Listing A.1.

Figure A.12

To filter on Mondays, Tuesdays and Thursdays, from 3 a.m. to 4 a.m:

> f i l t e r T S (c (21 ,991) , days=c (1 , 2 , 4) , hours=c (3))

To filter from Mondays to Fridays, from 3 a.m. to 4 a.m:

> f i l t e r T S (c (21 ,991) , days=c (1 , 2 , 3 , 4 , 5) , hours=c (3))

42

Figure A.13 The estimated cumulative distribution function for time series 21.
Code to produce it in Listing A.2.

or

> f i l t e r T S (c (21 ,991) , days=c (1 : 5) , hours=c (3))

To consider only a certain period, you can use the option, interval. The
default is returning data from all of the interval covered by the time series.
interval uses the same syntax as in graphTS().

To filter from Mondays to Fridays, from 8 a.m. to 12 A.m and from 2 P.m.
to 5 P.m:

> f i l t e r T S (c (21 ,991) , days=c (1 : 5) , hours=c (8 : 1 1 , 1 4 : 1 6))

Notice that filterTS() modifies the relevant time series directly. The time
series then only consists of the mentioned observations. If further work
is going to be carried out on the full time series, the user can invoke the
fetchTS() to restore them.

43

Figure A.14 Estimate of two different time series. The ranges of the series differ
and depend on chosen units. The chosen range in this example does
not cover any of the two ranges of the time series. Code generating
the plot shown in Listing A.3.

A.10 Saving the session and exiting R

To save your session such that command history, imported data etc. will
automatically be re-read when starting R next time, you have two functions.
One is save.image() which you can invoke at any time. When quitting R,
you can also just use q() and answer y to saving your session:

> q ()
Save workspace image? [y/n/c] : y

Remember that this has nothing to do with the text file(s) you are editing
with Emacs. Remember also to save this/these from emacs before discon-
necting.

44

	Introduction to R and Mysql
	A brief guide to SQL
	Basics of SQL
	Modifying Database records
	ODBC
	Accessing a MySQL Database

	Data - description and preparation
	Data overview
	Detection of errors in data
	Outliers
	Constant sub-sequences

	Resampling and smoothing
	Electricity consumption
	District Heating

	Multivariate statistics
	Principal component analysis
	Heat and cooling demands and electricity consumption
	Temperature variation throughout the building

	Cluster analysis
	ARMAX models
	An ARMAX model of the atrium room temperature

	Problems and notes

	Conclusions
	Bibliography
	A tutorial on R and tools to visualize data
	Log on to the IMM server
	Starting R
	The R interface
	Importing data from the database
	Errors
	Getting information about a time series
	Graphics
	Graphical setting initialization
	Plotting a time series

	Estimating distribution functions
	Filtering a time series with specific days/hours
	Saving the session and exiting R

