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ENGLISH SUMMARY 

More than 40 years ago Povl Ole Fanger presented his doctor dissertation on 
thermal comfort. The discoveries of Fanger are still the foundation of thermal 
comfort evaluations in several standards and norms all over the world. Alternative 
methods have been suggested, but Fanger’s research still gives the most detailed 
view on how to create good thermal indoor environment. A knowledge that is 
essential in order to secure and optimise thermal comfort for building occupants. 

This Ph.D. study presents a tool for simulation and evaluation of thermal comfort 
based on building energy simulations. The gap of missing input parameters for 
thermal comfort calculations has been closed with calculation methods for clothing 
level, air velocities and thermal radiant exchange. 

Simulation of thermal comfort is not and will never be exact predictions, a fact that 
is important to communicate to decision makers; the tool therefor presents the 
results with clear visualisation of uncertainties. 

 

DANSK RESUME 

Det er over 40 år siden Povl Ole Fanger præsenterede sin doktorafhandling om 
termisk komfort. Fangers opdagelser er i dag grundlaget for vurdering af termisk 
komfort i en lang række standarder og normer over hele verden. Alternative 
metoder er blevet opstillet, men det er stadig Fangers forskning, der giver det mest 
detaljerede indblik i, hvad der skaber et godt termisk indeklima. En viden, der er 
nødvendig, for at sikre og optimere den termiske komfort for brugerne af en 
bygning. 

Med denne ph.d. afhandling præsenteres et værktøj til simulering og evaluering af 
termisk komfort baseret på bygningsenergisimuleringer. Kløften af manglende 
input data er blevet lukket med metoder til beregning af beklædningsniveau, 
lufthastigheder og strålingspåvirkninger.  

Simulering af termisk komfort er ikke og bliver aldrig en eksakt forudsigelse, 
hvilket er væsentligt at kunne formidle til beslutningstagere, derfor præsenteres 
resultatet af simuleringerne på en måde hvor betydningen af usikkerheder og 
variationer fremgår tydeligt. 
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PREFACE 

This thesis sums up the work carried out during my PhD study. The basic idea 
behind the study is optimising thermal comfort in buildings through improved 
simulations for thermal comfort evaluation. 

The thesis compiles the five articles written in connection with the study. 

The first article to be presented is a review of the aspects of thermal comfort 
simulation. Then three articles are presented, each focusing on researching and 
improving simulations of an indoor thermal parameter. The last article to be 
presented explores the handling of uncertainties in simulations and how to present 
simulation results with respect to the underlying uncertainties. The connection 
between the articles is illustrated below. 

 

The articles in the thesis are exact replicas of the published, presented and 
submitted articles when it comes to structure, wording and figures. The only things 
changed compared with the original articles are: 

- The layout of the articles has been changed to get a uniform layout of the 
entire thesis 

- Nomenclature  has been unified to ease reading of the thesis 
- Acknowledgements have been removed from the articles to gain better 

flow in the thesis 
- References have been moved to a complete reference list at the end of the 

thesis 
- Figures, tables and equations are numbered continuously through the thesis 
- An error in a table has been corrected. A note about it is placed in the table 

caption 
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“A review of thermal comfort models and their implementation in building 
simulation tools” 
Vorre, M. H, Jensen, R.L.  
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“Radiation exchange between persons and surfaces for building energy 
simulations” 
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NOMENCLATUR 

,	eff  effective radiation area of object  m2 

 area of object  m2 

  azimuth angle measured from the persons sight direction ° 

  geometrical inlet area of opening m2 

  effective radiation area of a person m2 

projected  a person’s projected area m2 

  Archimedes number - 

  area of sphere m2 

  altitude ° 

  clothing insulation Clo 

  draught rate - 

  emissivity - 

→   view factor or angle factor from object  to object  (how 
big an area does object  cover compared with the whole 
area that object  radiates to) 

- 

  projected area factor - 

  angle ° 

  geometrical inlet height of opening m 

  height m 

  inlet constant for a 3D jet - 

  inlet constant for a plane jet - 
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  room constant for a 3D jet - 

  room constant for a plane jet - 

  metabolic activity met 

  mean ~ 

  productivity relative to maximum value - 

  Percentage Dissatisfied - 

  Predicted Mean Vote - 

  Predicted Percentage Dissatisfied - 

→   heat flow by radiation from object  to object  W 

  correlation koefficient - 

  radius m 

  relative humidity - 

  standard deviation ~ 

  the Stefan-Boltzmann constant W/m K  

  air temperature °C 

  optimum comfort temperature inside °C 

  the surface temperature of object  K 

  optimum operative temperature indoor °C 

 indoor temperature °C 

,   mean outdoor temperature for a time period °C 

  mean radiant temperature K 

  mean radiant temperature °C 
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,   air temperature in the occupied zone °C 

  operative temperature °C 

  outside temperature °C 

,   outside temperature at 6 AM °C 

Δ   radiant asymmetry K 

  outside running mean temperature °C 

  thermal sensation vote on a scale from -3 to 3 - 

  surface temperature of window °C 

  air velocity m/s 

  inlet air velocity m/s 

  air velocity in the center of the jet in the distance  from 
the inlet 

m/s 

  distance m 

  distance to the virtual origin of the flow at the opening m 

  penetration length m 

  vertical displacement of flow m 
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THE STEPS FOR BETTER THERMAL 
COMFORT SIMULATIONS 

In order improve simulation of thermal comfort and thereby hopefully optimise 
thermal comfort in future buildings, the following steps were set up: 

1. Explore the state of the art in simulation of thermal comfort: 
a. The methods for calculating thermal comfort 
b. The capabilities of current building simulation tools 
c. The research in calculation of the input parameters required for 

calculating thermal comfort 
d. How to handle uncertainties on input parameters in simulations 

2. Select which parameters to focus on, in order to improve simulation of 
thermal comfort 

3. Research the selected parameters one at a time and develop methods for 
simulation 

4. Gather the findings in an application that can calculate thermal comfort and 
take uncertainties and variations into account 

The first article is presented on the next page and covers steps 1 and 2. 

The second, third and fourth articles each cover the research of one parameter. 

The fifth article describes the handling of uncertaianties and presents a final 
application.
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First article: 
A REVIEW ON THERMAL COMFORT 

MODELS AND THEIR 
IMPLEMENTATION IN BUILDING 

SIMULATION  

 

Mette H VORRE1,*, Rasmus L JENSEN2 
 
1Energy and Environment, Danish Building Research Institute, Aalborg University, 
Copenhagen, Denmark 
2Department of Civil Engineering, Aalborg University, Aalborg, Denmark  
 
* Corresponding author: Mette Havgaard Vorre 

Keywords: Mean radiant temperature, air velocity, PMV, long term, clothing, 
uncertainty 

ABSTRACT 

Thermal comfort in a building is inevitably connected with the building’s energy 
consumption. An optimisation of either one will affect the other and a combined 
optimisation process is, therefore, the ideal way to ensure that expectations to both 
the energy performance and the thermal comfort of the occupants are met. This 
literature review investigates the possibilities of basing thermal comfort simulations 
on building energy simulation tools. Firstly methods for the evaluation of thermal 
comfort are explored, secondly the capabilities of thermal comfort simulation in 
current building simulation tools are investigated and thirdly the possibilities of 
calculating the needed input parameters for thermal comfort calculations are 
explored. For design optimisation, Fanger’s local thermal discomfort measures give 
the most useful information, while for compliance check of a design both Fanger’s 
global thermal comfort and de Dear’s adaptive thermal comfort are very adequate. 
None of the investigated building simulation tools can simulate local thermal 
discomfort, some can partly simulate global thermal comfort and several can 
simulate adaptive thermal comfort. Finally it appears promising to develop 
calculation methods based on existing research for the needed input parameters in 
order to simulate local thermal discomfort and global thermal comfort. 
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KEYWORDS 

Mean radiant temperature, air velocity, PMV, long-term thermal comfort model, 
clothing, uncertainty 

INTRODUCTION 

Wishes for better comfort drove man to develop buildings. The basic needs were 
fulfilled centuries ago, and buildings today are much more than just shelters against 
the outdoor environment. Yet occupants’ satisfaction with the thermal environment 
can still not be taken for granted. Brand new buildings experience problems with 
draught, warm / cold thermal radiation, overheating in summer and low 
temperatures in winter. 

One way to ensure indoor thermal comfort is through large plants for heating and 
cooling, the way it has been done for decades, but also a way which has led to 
massive energy consumption. 

Another way is to improve simulation of thermal comfort in order to foresee the 
problems, and then optimise the building design for high thermal comfort and low 
energy consumption. Building energy simulation tools are already used in the 
optimisation of the building’s energy efficiency. By expanding the tools’ capabilities 
in the simulation of thermal comfort, the energy efficiency and thermal comfort can 
be optimised in parallel. Through an overview of the thermal comfort in the building 
over a longer period, is it possible to point out areas and periods of interest for 
further analysis in order to optimise the building design for better thermal comfort. 

This paper explores the possibilities of expanding building energy simulation tools 
for better thermal comfort simulations. The main section headings of the paper are 
listed below.  

 Background 
 Measures of thermal comfort 
 Building energy simulation tools and thermal comfort 
 Radiant impact 
 Air velocities 
 Personal factors: Clothing and activity level 
 Dealing with uncertainties 
 Conclusion  

First the background for the need of improved simulations of thermal comfort is 
presented, followed by assessment of methods for evaluation of thermal comfort and 
the capabilities of thermal comfort simulation in existing building simulation tools. 
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Then calculation methods for the needed input parameters are explored together with 
a short overview of possibilities for handling input parameters’ uncertainties in the 
simulations. Finally a conclusion is made on the possibilities of expanding building 
energy simulations with better thermal comfort simulations. 

BACKGROUND 

The need for better thermal comfort simulations is founded on at least three main 
causes: 

 Demands to energy efficiency 
 Rapid development in building technologies  
 Occupants’ rising expectations to thermal comfort. 

Since the energy crisis in the 1970s, northern European countries have focused on 
energy optimisation of buildings. This has led to passive houses, zero-energy 
buildings and to legislation on the energy efficiency and insulation requirements for 
buildings. 

Researchers from Aalborg University monitored the indoor environment in eight 
new, passive houses in Denmark after the occupants moved into their new homes 
(Brunsgaard et al. 2012). The researchers found that some of the houses both 
overheated in summer and had insufficient heating capacity in winter. Something in 
the design had simply failed. 

EARLIER EXPERIENCE WAS ENOUGH 

Some decades ago, experience was the key word. Buildings in Denmark were made 
of brick with windows covering a minor part of the façade and inside rooms were 
relatively small compared with today’s standard. The exterior walls and windows 
were poorly insulated and created draught and radiant asymmetry in the room. The 
same scenario of thermal comfort issues applied for most rooms and therefor the 
same solutions could be applied. 

Nowadays new building techniques make it possible to build large glassed façades, 
with rooms stretching over the entire floor plan and with atriums in the middle. Air 
changes can be handled by automatically controlled windows, where openings are 
adjusted according to inside and outside climate. Thermal comfort can vary greatly 
in a room, over time and between buildings, making it harder to predict thermal 
comfort based solely on experience and thereby harder to foresee consequences of 
building energy optimisation on experienced thermal comfort. 
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BUILDING ENERGY SIMULATIONS 

In the design process of buildings, simulations are performed in building energy 
simulation tools like EnergyPlus (Crawley et al. 2000)or ESP-r (Hand 2006) to 
optimise a building energy wise. Most tools utilise internal air temperature as 
control parameter for their heating and cooling systems, which to some extent is also 
how systems are controlled in real life, but some are also able to control according to 
operative temperature or predicted mean vote (PMV). The calculations of these 
parameters in the programs are described in more detail later in this article. 

To ensure acceptable thermal comfort, while optimising energy consumption, 
boundaries are set for internal temperatures; for example the maximum number of 
hours above or below certain temperature limits. In a design process, the simulated 
number of hours when the operative temperature is outside these limits are counted 
and used for assessing thermal comfort, even though more parameters affect the 
thermal comfort of the occupants, e.g. air movements, clothing level and the weather 
outside. 

THERMAL COMFORT AND ENERGY CONSUMPTION 

Thermal comfort is essential for the energy optimisation of a building, because poor 
thermal comfort can increase energy consumption. Some occupants will simply put 
on a sweater when it is cold, or wear short sleeves when it is warm. Others choose to 
adjust the settings of heating and cooling systems. Interventions could also be to 
block inlet openings or put up small air conditioning devices. All these interventions 
are caused by dissatisfactory thermal environment and they can affect the energy 
consumption of a building. 

A way to improve thermal comfort in buildings is through better measures for 
thermal comfort in building energy simulation tools, which would also lead to more 
robust building energy simulations. Furthermore early knowledge on thermal 
comfort problems makes it both easier and cheaper to change an inopportune 
building design. 

The objective of this paper is a) to find a measure of thermal comfort that is suitable 
for optimisations in parallel with building energy optimisations, b) to investigate 
features of existing building energy simulation tools for thermal comfort evaluation 
and c) to explore the possibilities for simulating the input parameters needed for 
calculating thermal comfort based on building energy simulation tools. 
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MEASURES OF THERMAL COMFORT 

To predict how occupants will perceive thermal comfort, researchers have described 
the connection between a number of objective parameters and occupant’s 
satisfaction with the thermal environment. 

In Europe the indoor environment standard EN 15 251 (CEN 2007) is used for 
assessing thermal comfort and in the US ASHRAE 55 (ASHRAE 2010) is used. 
Both describe how thermal comfort can be assessed either using the equations for 
global thermal comfort and local thermal discomfort or the equation for adaptive 
thermal comfort. A third method relates thermal environment to productivity of the 
occupants, which is interesting because the price of obtaining a desired thermal 
environment can then be compared with the earnings through workers’ higher 
performance. 

In the next sections, the three methods for evaluating thermal comfort are explored 
in relation to optimisation through simulation of thermal comfort based on building 
energy simulations. 

GLOBAL THERMAL COMFORT AND LOCAL THERMAL DISCOMFORT 

The concepts of global thermal comfort and local thermal discomfort are both based 
on research by P.O. Fanger. The equations are based on studies in climate chambers 
under strictly controlled climate conditions, activity levels and clothing levels, and 
the equations therefore only apply to buildings with full HVAC. 

Global thermal comfort is based on the heat balance of the entire body and can thus 
be seen as an average for the body. 

Six parameters influence global thermal comfort (Fanger 1970): 

 Activity level 
 Thermal resistance of clothing 
 Air temperature 
 Mean radiant temperature 
 Relative air velocity 
 Water vapour pressure in ambient air 

The parameters are weighted in an equation that calculates the predicted mean vote 
(PMV) on the seven-point scale shown in Table 1.  
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Table 1 Seven-point thermal sensation scale 

+3 Hot 

+2 Warm 

+1 Slightly warm 

0 Neutral 

-1 Slightly cool 

-2 Cool 

-3 Cold 

 

Assuming that votes outside -1 and 1 can be regarded as persons being dissatisfied 
with the thermal environment, Fanger describes the relation between PMV and the 
predicted percentage dissatisfied, PPD, with Equation 1 (Fanger 1970). The relation 
is also shown in Figure 1. 

Equation 1 

100 95 ∙ . ∙ . ∙  

 

 

Figure 1 Predicted percentage dissatisfied, PPD, as a function of the predicted mean vote, 
PMV. 

As can be seen from Figure 1, Fanger found that even with a PMV of zero, 5% 
would still be dissatisfied with the thermal environment, because thermal comfort is 
subjective. 



A REVIEW ON THERMAL COMFORT MODELS AND THEIR IMPLEMENTATION IN BUILDING SIMULATION.  

23 

In addition to global thermal comfort, Fanger found that local thermal discomfort 
can be caused by: 

 Draught 
 Radiant asymmetry 
 Floor temperature 
 Vertical air temperature gradient 

These cause local thermal differences between body parts, which is perceived as 
uncomfortable, even if global thermal comfort is achieved. The percentages 
dissatisfied, due to each of the four causes were found through climate chamber 
experiments and correlation equations were developed.  

ISO 7730 (CEN 2005) and EN 15 251 (CEN 2007)set up criteria for three thermal 
comfort categories in order to sum local and global thermal comfort. For each 
category, all criteria measured should be satisfied simultaneously. The criteria are 
listed in Table 2, were category D covers conditions outside the other ranges. 

Table 2 Categories of thermal comfort. 

 

Fanger’s methods are derived from climate chamber tests and only apply to 
buildings with HVAC. In order to make it applicable  also to buildings with natural 
or hybrid ventilation, an expectation factor was added to the PMV calculations in 
2002 (Fanger and Toftum 2002). The factor is multiplied to the calculated PMV and 
takes into account that occupants in non-air conditioned buildings have lower 
expectation to the thermal environment and therefor votes closer to neutral than 
would be the case in an air-conditioned building under the same thermal conditions. 
The expectation factor varies between 0.5, for regions with few air conditioned 
buildings, to 0.9 or 1.0, for buildings in regions where air conditioned buildings are 
common. 
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Assessment of method in relation to simultaneous optimisation of 
thermal comfort and energy efficiency 

The method proposed by Fanger involves a number of parameters not calculated by 
a building energy simulation tool including air velocities and parameters related to 
occupants, which are factors with a great uncertainty and variation, both among 
people in a room and over time for a specific person or room. 

The method requires iterations, because the skin temperature of the person depends 
on both activity level and conditions in the thermal environment, which will increase 
simulation time. 

On the other hand, the methods by Fanger calculates one global thermal comfort 
parameter and four parameters for local thermal discomfort, making it possible to 
evaluate thermal comfort broadly, which in turn enhances the possibilities for 
optimising building design for better thermal comfort. The thorough and broad 
approach makes it possible to both pinpoint possible problems, mainly using the 
local thermal discomfort parameters, and make a compliance check of  thermal 
comfort in a given building design. 

ADAPTIVE THERMAL COMFORT 

The adaptive approach to thermal comfort is based on field studies from around the 
world.  

de Dear and Brager gathered measurements and questionnaires from 160 buildings 
in 9 different countries and compared the occupants’ actual votes on the seven point 
scale in Table 1 with the calculated PMVs and PPDs using Fanger’s equations (de 
Dear and Brager 1998). They found that for buildings with full HVAC systems, the 
calculated PPDs matched the actual votes, but for buildings with natural or hybrid 
ventilation Fanger’s equations overestimated the percentage being dissatisfied under 
warm conditions. Further they found that occupants’ actual votes in natural or 
hybrid ventilated buildings depended largely on the outdoor temperature. 

Their findings led them to develop equations for calculating adaptive thermal 
comfort, where the human ability to adapt physiologically, psychologically and with 
its behaviour influences the perceived thermal comfort in buildings with natural or 
hybrid ventilation. 

The adaptive thermal comfort model describes the optimum operative temperature 
inside the building as a function of the external temperatures for the previous days. 
In the ASHRAE-55 standard (ASHRAE 2010), the relation between external 
temperature and indoor comfort temperature is given as: 
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Equation 2 

0.31 ∙ , 17.8°C 

Where  is the indoor comfort temperature and ,  is the mean outdoor 
temperature for a time period between 7 and 30 days back in time. 

Centred on the indoor comfort temperature, a band of 5°C describes 90% 
acceptability among users and a band of 7°C describes 80% acceptability. 

In the European standard on indoor environmental inputs, EN 15 251 (CEN 2007), 
adaptive thermal comfort is included for naturally ventilated buildings. Based on 
measures in European buildings, the indoor comfort temperature can be calculated 
as: 

Equation 3 

0.33 ∙ , 18.8°C 

The bands in the European standard are 4°C for thermal comfort in category I, 6°C 
for thermal comfort in category II and 8°C for thermal comfort in category III. 

In Figure 2, the limits for comfort temperatures are shown depending on the mean 
outdoor temperature according to the European standard, EN 15 251 (CEN 2007). 

 

Figure 2 Design limits for operative temperature indoor, depending on weighted running 
mean outdoor temperature when working with adaptive thermal comfort in buildings without 
mechanical cooling. 
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Assessment of method in relation to simultaneous optimisation of 
thermal comfort and energy efficiency 

The adaptive method is simple to calculate, because it assumes that people will 
adapt to the thermal climate in the building, by regulating their clothing, adjusting 
window openings etc., which on the other hand limits the method to buildings where 
occupants have these opportunities for adjustments. Furthermore the method only 
applies to offices. 

The equations for adaptive thermal comfort needs no information on activity level 
and clothing, which are factors with a great uncertainty and variation, both among 
people in a room and over time for a specific person or room.  

For optimisation of thermal comfort, the adaptive method is only valid in buildings 
with natural or hybrid ventilation, which excludes HVAC buildings. Compared with 
Fanger’s method, the calculations are much simpler and all inputs are known from 
building energy simulation tools, but adaptive thermal comfort is also a black box 
calculation. The method is based on measures in several office buildings, where 
some probably worked better than others. 

The method is well suited for a general compliance check of a building’s thermal 
comfort, especially if combined with Fanger’s measures for local thermal 
discomfort. 

In an optimisation process, poor design might not be caught if the mean air 
temperature in the room is acceptable and the method is therefore weak in the design 
phase. 

THERMAL ENVIRONMENT AND PRODUCTIVITY 

Fanger’s method and the adaptive method of evaluating thermal comfort are both 
focused on how occupants perceive the thermal environment. Another approach is to 
connect thermal conditions with workers productivity. 

Most recent studies in this field focus on office work in call centres, schools and 
laboratories. In 2006 Seppänen et al. (Seppänen, Fisk, and Lei 2006) compiled data 
from several field studies to find the most reliable correlation between thermal 
environment and productivity: 

Equation 4 

	0,1647524 ∙ 0,0058274 ∙ 0,0000623 ∙ 0, 4685328 

Where  is the productivity relative to maximum value and  is the indoor room 
temperature in °C. 
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The equation is subject to high uncertainty as the performance measured varied 
greatly from study to study. All buildings in the studies had full HVAC and the tasks 
measured were routine in nature. 

Jensen (Jensen 2008) bases his correlation on climate chamber tests and describes 
the relation between productivity and thermal sensation vote, as: 

Equation 5 

	 0,0029 ∙ 0,0034 ∙ 0,999	

Where  is the productivity relative to the maximum value and  is the thermal 
sensation vote on the scale from -3 to 3 in Table 1. 

The relationships between thermal environment and productivity by both Seppänen 
(Seppänen et al. 2006) et al. and Jensen (Jensen 2008) are plotted in Figure 3. In 
order to compare the correlations, the horizontal axes are chosen to cover 
approximately the same range. 

 

Figure 3 Relative performance as a function of thermal environment. To the left the relation 
found by Seppänen et al. (Seppänen et al. 2006) from field studies and to the right the relation 
found by Jensen (Jensen 2008) from climate chamber tests. 

Both correlations describe the highest performance at a slightly cool environment. 
But were performance is found to be highly dependent on room temperature in the 
studies by Seppänen et al. (Seppänen et al. 2006), Jensen (Jensen 2008) finds that 
performance only varies slightly with the thermal environment. 

According to Leyten et al. (Leyten, Kurvers, and Raue 2013), the differences 
between the two studies can both be due to the uncertainties that lie within these 
types of studies, but also because the one by Jensen (Jensen 2008) is based on 
studies in a climate chamber, with relatively short time periods and the studies 
gathered by Seppänen et al. (Seppänen et al. 2006) are from field studies. Leyten et 
al. (Leyten et al. 2013)  find that the productivity varies more with the thermal 
environment in field test than in climate chamber tests, presumably due to less 
motivation in the performed tasks in the climate chambers, and because in the 
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climate chamber the tests persons performed mental/creative work instead of simpler 
routine office work, which is the fundament of the field studies. 

Assessment of method in relation to simultaneous optimisation of 
thermal comfort and energy efficiency 

The relation between thermal environment and productivity is easy to calculate if 
either the indoor temperature or the thermal sensation vote is known. Calculation of 
the thermal sensation vote requires the use of Fanger’s method and thereby 
knowledge on the six parameters affecting thermal comfort. 

In an optimisation process, the method has the same disadvantages as the adaptive 
thermal comfort method, because it is not possible to identify causes of thermal 
comfort problems. 

SELECTION OF METHOD FOR THERMAL COMFORT EVALUATION 

Of the three methods described for evaluating thermal comfort, the method by 
Fanger is selected for further exploration on improving the simulation of thermal 
comfort. 

Fanger’s method is selected because it gives the best possibilities to point out causes 
for thermal discomfort, which is fundamental in the optimisation process of a 
building. Only by knowing if draught is a problem, is it possible to change the 
layout of inlet openings in a way to avoid it, or to take action when a large glassed 
façade generates radiant asymmetries in cold or warm parts of the year. 

Fanger’s method is the most complex of the methods and to be able to calculate both 
global thermal comfort and local thermal discomfort, the following input parameters 
are required: 

Global thermal comfort:  

- air temperature 
- mean radiant temperature 
- relative humidity 
- relative air velocity 
- clothing level  
- activity level 

Local thermal discomfort, draught: 

- air temperature 
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- air velocity 
- turbulence intensity 

Local thermal discomfort, vertical air temperature difference: 

- vertical air temperature difference between head and feet 

Local thermal discomfort, warm and cool floors: 

- floor temperature 

Local thermal discomfort, radiant asymmetry: 

- difference in thermal radiation side-to-side for a horizontal plate 
- difference in thermal radiation side-to-side for a vertical plate 

The air temperature, relative humidity and surface temperatures are normally known 
from building energy simulations. The rest of the needed parameters must be 
calculated to evaluate thermal comfort. 

Of the input parameters, it is chosen to focus the further exploration on radiation, air 
velocities and the human factors: activity level and clothing level. These are chosen 
because they have the greatest influence on thermal comfort. 

Thermal radiation affects both mean radiant temperature and radiant asymmetry. 
Mean radiant temperature affects global thermal comfort nearly as much as the air 
temperature. Mean radiant temperature is calculated from surface temperatures, 
emissivities of surfaces and view factors between surfaces and person. View factors 
describe how much each surface affects the person and do not vary with time for the 
same position and orientation. To take into consideration that we do not know where 
a person is situated at a given time, view factors must be calculated for several 
positions and orientations in the room, but they only need to be calculated once, in 
order to improve the calculations of thermal comfort in all time steps of a 
simulation. 

Air velocities are chosen because draught is one of the main causes of complaints of 
thermal environments (Fanger et al. 1988) and air velocities also play an important 
role in global thermal comfort. Air velocities are chosen even though there is a 
contradiction between building energy simulation tools and the calculation of air 
velocities, as one of the pillars in building energy simulation tools is the assumption 
of full mixture of the air in the room. 
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Clothing is interesting because it is a quick way for occupants to influence their 
thermal comfort. According to Fanger’s equation, a change in clothing from trousers 
and t-shirt (0.6 clo) to a light business suit (0.9 clo) can change PMV from -1.2 to -
0.5, which corresponds to PPDs of 35.2% and 10.2%. Fanger found that under the 
same conditions, including same clothing insulation, there will always be at least 5% 
dissatisfied with the thermal environment. In a real building, people can vary their 
clothing to optimise their thermal comfort and in order to make realistic simulations, 
it is vital to take this effect into consideration, as it may potentially lead to more 
realistic evaluations of thermal comfort. 

Activity level is also a means for occupants to influence their own thermal 
environment by e.g. standing up or sitting down. A change in activity level from 
seated relaxed (0.8 met) to standing (1.2 met) can change PMV from -2.2 to -0.3, 
resulting in a change in PPD from 84.9% to 6.9%. Occupants’ thermal adjustment 
through activity level is extremely interesting to be able to simulate. 

UNCERTAINTY AND VARIATIONS 

The nature of the parameters required for simulating thermal comfort using the 
equations by Fanger differ very much. Some are related to the building, others are 
related to the occupants. Some vary greatly over time, others are more stable. Some 
we can calculate very precisely, others are highly uncertain predictions regardless of 
how much effort we put into it. 

To do justice to the research of Fanger and the future decisions made based on the 
calculated results, it is important to somehow take into account, the effect of 
uncertainty and variations of the input parameters. This is seen as very important, 
because calculations like this can quickly be branded as useless because some 
parameters have both high uncertainty and high impact on the results. If instead it is 
possible to show the range of the results in the sample space, decisions can be made 
on an informed basis. 

The objectives for the rest of this paper are therefor to explore possibilities for: 

 Simulation of thermal comfort in current building energy simulation tools 
 Calculating the input parameters: mean radiant temperature, air velocity, 

clothing and activity level, in a setup where optimisation of thermal 
comfort is based on building energy simulations 

 Handling uncertainties and variations on input parameters in the final 
results. 
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BUILDING ENERGY SIMULATION TOOLS AND THERMAL 
COMFORT 

Four building energy simulation tools were explored; all of them have made an 
effort to give a better estimate of thermal comfort than an operative temperature 
based on area weighted mean radiant temperature and air temperature. 

In TRNSYS (Klein and et al. 2010) the simulation of predicted mean vote (PMV) 
and predicted percentage dissatisfied (PPD) was built in by Solaini et al. (Solaini et 
al. 1996) in 1996. Mean radiant temperature is calculated by a sphere representing 
the human body, while the user should provide information on: air velocity, 
humidity, clothing and activity level. 

EnergyPlus (Crawley et al. 2000) can simulate global thermal comfort measured by 
PMV and PPD, and additionally it is possible to simulate adaptive thermal comfort. 
The simulation of global thermal comfort is based on inputs given by the user on 
activity level, air velocity and clothing level. Mean radiant temperature can be 
calculated in three different ways: as an area-weighted mean of surface 
temperatures, as a so called “surface-weighted mean” and by using angle factors. 
The “surface-weighted mean” is used to simulate a person situated close to a surface 
and is calculated as the average between the surface temperature in question and the 
area-weighted mean of all surfaces in the room. The angle factor mean radiant 
temperature is found by weighting the surface temperatures according to the angle 
factors or view factors, which have to be given by the user. 

ESP-r (Hand 2012) and IDA ICE (EQUA Simulation AB n.d.) also provide 
possibilities of calculating global thermal comfort when the user provides 
information on air velocity, activity level and clothing level, while the tools can 
calculate simplified mean radiant temperatures.  

None of the four building simulation programs were able to calculate the thermal 
radiant impact on a person in multiple points in a room, to calculate thermal comfort 
with only minimum of extra input from the user or to calculate any of the measures 
for local thermal discomfort. The next sections will explore whether it is possible to 
make these calculations, since it hasn’t been implemented yet. 

RADIANT IMPACT 

Thermal comfort is influenced by radiation in two ways: heat loss to the 
surroundings by thermal radiation and asymmetry in thermal radiation. Radiation 
affects both global thermal comfort and local thermal discomfort. 

Thermal radiation can be divided into short-wave radiation and long-wave radiation. 
Short-wave radiation is the type of radiation received from the sun or a radiant 
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heater, and long-wave radiation describes the radiation between surfaces or objects 
by emission due to temperature differences. Short-wave radiation transports most 
energy and is directed, while long-wave radiation can be treated as diffuse. 

Thermal comfort in building energy simulations is typically evaluated by the 
operative temperature, which is the average of the air temperature and the mean 
radiant temperature in the room. In most programs, only a single operative 
temperature is found for a room and it is calculated as the surface area mean, even 
though the mean radiant temperature can vary greatly e.g. if the room has large 
glassed areas. 

The impact of thermal radiation depends on surface temperatures, the emissivities of 
surfaces and how big a part that the given surface covers of a person’s radiant field, 
which is measured by a factor named either the view factor (Cannistraro et al. 1992) 
or the angle factor (Steinman, Kalisperis, and Summers 1988). Knowledge about the 
view factor between a person and the surfaces surrounding him is one of the things 
needed for a better calculation of the radiant impact and thereby better calculations 
of thermal comfort. 

A person exchanges radiation with the surroundings through his effective radiation 
area. The effective radiation area is smaller than the total skin area because parts of 
the body exchange radiation with the body itself, e.g. between fingers or between the 
legs. James D. Hardy and Eugene F. DuBois (Hardy and DuBois 1938) measured 
the effective radiation area in 1938 by means of a wrapping method. A person was 
wrapped in paper like an Egyptian mummy, and the surface area was measured by 
rubber-coating the paper – a technique similar to the one used for measuring the 
total area of the human skin also known as the DuBois area. 

Later on, several studies used photographs to find the effective radiation area, the 
projected area and the projected area factor of the human body. Guibert and Taylor 
(Guibert and Taylor 1952) had people lying down in four different postures from 
erect to crouching. The study involved three persons, and 32 photographs were taken 
of each person. The photographs were taken in a half sphere, taking advantage of the 
bilateral symmetry of the human body. The distance between the person and the 
camera was 10.7 m - 12.2 m. A large distance is desirable to be able to assume that 
the measured projected area equals the spherical projection. The radiation area was 
found dependent of posture and independent of body type. Photos were taken of 
both nude and clothed persons, where the effective radiation area of the clothed 
body was a factor 1.14 higher than for the nude body. The effective radiation area 
factor was found to be 0.77 for a standing person and 0.70 for a seated person. 
Projected area factors were given as diagrams for the four postures.  

Geometrical shapes as simplifications of the human body were suggested for easier 
calculation of projected area factor and view factor. Taylor (Taylor 1956) suggests 
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the use of a sphere to represent the seated person and a cylinder for the standing 
person. Underwood and Ward (Underwood and Ward 1966) suggest an oval 
cylinder as a good fit for their results for standing persons. Underwood and Ward’s 
results were obtained by a photographic method, with photos taken of 25 male and 
25 female test persons. The photos were taken at a distance of 4.57 m and with 
irregular steps of altitude angles due to their test fixture. The small distance between 
subject and camera required them to make corrections of the measurements to 
compensate for the parts of the body close to the camera being bigger than the parts 
furthest from the camera. To avoid these compensations, they found that pictures 
should have been taken from a distance of a least 20 m. 

Fanger et al. (Fanger, Angelius, and Kjerulf-Jensen 1970) adopted the test set-up by 
Underwood and Ward with some modifications. Mirrors were used in the fixture to 
“double” the distance between subject and camera to 7 m and to make the switches 
between altitude angles quicker, because the camera itself was not moved; only the 
mirrors were adjusted. 78 pictures were taken of each of the 10 male and 10 female 
subjects with angle steps of 15° for both altitude and azimuth in 1/8 of a sphere. The 
results were given as diagrams for projected area factors for seated and standing 
persons. The projected area factors were used for making diagrams of view factors 
from a person to walls, ceilings and floors in an orthogonal room, because in 
contrast to the earlier studies mentioned, this study was aimed at thermal comfort in 
a room. To read the view factors from the diagrams, each surface must be divided as 
shown in Figure 4 and the distances a, b and c used as input to read the diagrams. 

 

Figure 4 To read the view factor of a surface from Fanger's diagrams, the surface needs to be 
divided according to the centre of the person and the distances a, b and c known. 

The results for view factors between man and surrounding surfaces were used when 
planning the studies on radiant asymmetry (Fanger et al. 1980, 1985). In the 1980 
article, Fanger et al. introduced the term ‘radiant temperature asymmetry’ as being 
the difference between the plane radiant temperatures of two opposite sides of a 
plate. Discussions on how this definition reflects the sensation by a person has not 
been found. 
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In 1988 Steinman et al. (Steinman et al. 1988) developed view factor diagrams for 
inclined surfaces by using computers and cubic spline to connect the results obtained 
by Fanger. With the new diagrams, view factors are no longer limited to orthogonal 
rooms. The principle of dividing the surfaces according to the person’s centre, as 
shown in Figure 4, is also used in the new diagrams, supplemented with angles for 
the inclination. 

Researchers using the photographic method to determine projected area factors 
make an effort to approach the results as if pictures are taken from an infinite 
distance. Horokoshi et al. (Horikoshi et al. 1990) question this approach as 
applicable in the calculation of view factors between a person and the surfaces in a 
room, especially concerning the floor. They argue that a more realistic measure of 
how a surface affects a person is found by means of an orthographic projection 
camera method, especially for surfaces close to the person, as the findings of Fanger 
are only valid if the distance to a surface is at least 7 m. In their own study, 
photographs were taken from a number of points on a surface instead of on a sphere. 
The method better takes into consideration that the human body is not plane, and 
parts of the body closest to a surface therefor appear larger. 

With the new decade, the 1990s, diagrams were substituted with algorithms that can 
be used in computers to calculate both projected area factors and view factors. Rizzo 
et al. (Rizzo, Franzitta, and Cannistraro 1991) and Cannistrato et al. (Cannistraro et 
al. 1992) transformed Fanger’s diagrams into polynomial algorithms. The 
algorithms calculate the projected area factor for a standing or a seated person from 
input on azimuth angle and altitude angle, and view factors are calculated from 
inputs on the position of the surface in correlation with the person, using the method 
shown in Figure 4. In 2000, algorithms for inclined surfaces were added (Nucara, 
Pietrafesa, and Rizzo 2000), making it possible to calculate view factors for any 
plane surface. 

New studies have been made using digital photographs and computer technology for 
measuring the projected area of a number of Italian subjects (Calvino et al. 2005, 
2009; La Gennusa et al. 2008), and these measures are used in a tool for calculating 
view factors to any plane surface, though still dividing the surface according to the 
centre of the person, as shown in Figure 4.  

A comparison between studies of projected area factors shows that nationality only 
has a slight influence when comparing data for subjects from Australia, Italy, China, 
Japan, Germany and the US (Nucara et al. 2012). 

Instead of using a camera and real persons, Tanabe et al.(Tanabe et al. 2000) use 
numerical computing to calculate projected area factors. The shape of a person used 
is obtained by commercially available software, and the shape is chosen to be close 
to the measures for Fanger’s test persons. Tanabe et al.(Tanabe et al. 2000) found 
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agreement within 10% accuracy of Fanger’s results when converting the results into 
diagrams for reading view factors to surfaces. Thereby, they showed that numerical 
simulations can be used in studies of projected areas and view factors.  

The use of numerical simulations and thermal manikins provide a basis for more 
detailed studies on the radiant impact of specific body parts (Kubaha et al. 2003, 
2004) and has been used for finding projected area factors of standing and walking 
persons and for comparisons between people with different weight and gender (Park 
and Tuller 2011). 

In conclusion it is found that the area of radiation to the human body has been 
researched for decades, though none of the developed calculations have been built 
into simulation tools. Based on the research it looks promising to develop a method 
for calculation of view factors suitable for thermal comfort simulations and thereby 
improve simulation of mean radiant temperature and thermal radiant asymmetry in 
building energy simulation tools. An advantage in this connection is that view 
factors do not change over time, calculation of view factors therefore only needs to 
be performed once for the room, while still improving calculations in all time steps. 

AIR VELOCITIES 

Air velocities affect both global thermal comfort and the sensation of draught. 

Exact calculations of future airflows are almost impossible because airflows are so 
easily affected by obstacles or differences in temperature. The most precise 
calculations can be made by computational fluid dynamics (CFD), though the 
calculation time is a major drawback in connection with long-term simulations.  

A premise of this literature review is the ability to make long-term, whole room 
simulations of thermal comfort in connection with building energy simulations. The 
review has, therefore, covered not only CFD but also zonal models and flow 
elements. 

CFD AND BUILDING ENERGY SIMULATIONS 

Building energy simulations and CFD complement each other in the simulation of 
thermal comfort. The needed boundary conditions to CFD are outputs from building 
energy simulations, and CFD is able to make detailed calculations of the airflows, 
which enhances the calculations of building energy simulations.  

The fundamentals of CFD are the solutions of Navier Stokes equations e.g. by using 
the finite volume method. Navier Stokes equations are differential equations and the 
finite volume method solves them by means of discretisation, where a balance 
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equation is set up for each small volume in the room as described by Patankar 
(Patankar 1983). 

In 1988, Chen (Chen 1988) combined CFD and building energy simulation to 
optimise the simulations of energy consumption  and  CFD is used to improve the 
calculations of heat transfer caused by differences in air temperatures in the room. 

Beausoleil-Morrison (Beausoleil-Morrison 2000) researches and describes in his 
thesis how a coupling between CFD and the building simulation program ESP-r  
should be done in order best to model indoor airflow and internal surface 
convection. He develops an adaptive controller that monitors the evolving thermal 
conditions and airflow conditions in the room, and this information is used to select 
suitable boundary condition for each surface to be used in the CFD simulations. The 
integration between CFD and ESP-r makes it possible to make better calculations of 
internal airflows and heat flows between rooms. The objective of the study was not 
long-term evaluations of thermal comfort, but better calculations for shorter periods 
of time, where the combination between the tools makes simulations for evolutions 
of flows better and easier. 

By coupling CFD and building energy simulations, it is possible to make CFD 
simulation for longer periods by assuming stationary conditions for each calculation 
instead of calculating the evolution of the flows in the room. Zhai et al. (Zhai et al. 
2002) describe a number of strategies for coupling between the programs. One 
strategy can be to make CFD simulations for specific hours of each day, e.g. 8:00 
am. Each time, in which CFD simulations are used, it can be chosen to make 
iterations between the programs until the results converge or it can be chosen to 
simply move on to the next time step without iterations. 

Zhai et al. (Zhai and Chen 2006) give an overview of different strategies for the 
coupling between building energy simulations and CFD and lists some fundamental 
rules based on sensitivity analysis and cost-benefit of when to choose a coupling 
strategy and which coupling strategy to choose. For instance, it is recommended to 
use simple energy simulations in the early design phase, while a method coupling 
energy simulations with CFD is recommended if the indoor air environment is 
heavily dependent on thermal boundary conditions. The type and frequencies of 
coupling depend on the size of fluctuations and influences from the outdoor 
environment on air movements and how precise the results need to be. 

All articles found are focused on short-term simulations of e.g. one day, when more 
accurate simulations were made. Long-term simulations are not feasible with CFD 
due to the long calculation time. 
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ZONAL MODELS 

 “A zonal model is an intermediate method between representing a space by a single 
homogenous node and that offered by the CFD techniques” (Megri, Snyder, and 
Musy 2005)  

Zonal models make it possible to make simulations of indoor air fields with lower 
calculation times than CFD. The models use a coarser grid supplemented with 
models for airflow. Zonal models are easier for a user to define than CFD models 
and are, therefore, more applicable as a tool in the early design phase of buildings. 

In 2001, Haghihat et al. (Haghighat, Li, and Megri 2001) developed a zonal model 
that can be integrated into building energy simulation tools and can calculate global 
thermal comfort in a room.  Jet characteristic equations are used to model 
mechanical ventilation, and good agreements were found between the results of the 
zonal model, the CFD model and the experimental data. They find that the model 
can be used to study the impact of e.g. room layout and air inlet diffuser types on 
thermal comfort, and they conclude that their model is a feasible approach for 
thermal simulation of naturally and mechanically ventilated rooms from an 
engineering view point. 

A method quite similar to a zonal model is the nodal model. Rees and Haves (Rees 
and Haves 2001) developed a nodal model for rooms with displacement ventilation 
and chilled ceilings. The room is divided into a number of vertical zones, and 
calculation nodes are placed in each zone and at the boundaries between zones. The 
method separates the air movement in the plumes from the rest of the room in the 
calculations and is able to reasonably reproduce measured air balances and room 
temperatures. 

FLOW ELEMENTS 

Flow elements are based on a principle of dividing the flow in the room into areas 
that can be treated independently of surrounding flows. Flow element theory is 
based on a combination of theoretical fluid dynamics and empirical experiments and 
observations. 

Flow elements describe the flow pattern from e.g. an inlet based on input on initial 
air speed, air inlet area and a diffuser constant, K. The diffuser constant is found 
experimentally for each inlet device. In case of non-isothermal flows, the 
temperature difference affects the flow and the effect is expressed by the 
Archimedes number and a constant taking the distribution of heat sources in the 
room into account.  
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According to P.V. Nielsen (Nielsen 1994), flows occurring in ventilated rooms can 
be divided into four categories with a total of 14 flow types, as shown in Figure 5. 

 

Figure 5 Flow elements occurring in ventilated rooms. The flow elements are divided into 
four categories (Nielsen 1994). 

Some of the first descriptions on flows in a room – that are still in use – are from the 
1950s when Koestel described the velocity decay (Koestel 1954) and trajectory 
(Koestel 1955) of a horizontal free jet. 

Flow elements are typically based on experiments in empty rooms with a simple  
box geometry while the buildings in real life would be filled with furniture and 
occupants. J.R. Nielsen (Nielsen 1998) tests the influence of furniture on the air 
movements in the upper part of a room with mixing ventilation and the maximum 
velocity in the occupied zone. The study is made in order to determine if flow 
elements derived for empty rooms are fully valid in furnished rooms. Air velocities 
are measured in a test room that could have three different lengths, and the velocities 
are measured both with and without furniture in the half of the room opposite the 
wall mounted inlet. It was found that the velocity in the occupied zone is lower in 
the furnished room than in the empty room. Thus designing according to an empty 
room is on the safe side in relation to avoiding draught. 
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In the paper “Analysis and Design of Room Air Distribution Systems” (Nielsen 
2007), flow elements, CFD and full-scale experiments are discussed as 
complementary methods for designing room air distribution systems. Nielsen argues 
that flow elements are well suited when ventilation is either based on mixing or 
displacement strategies. However, some air distribution systems cannot be 
adequately described by flow elements, for example a textile ceiling diffusor inlet or 
vertical air distribution systems where draught is mainly generated by the heat load 
in the room and not by the air supply. In these situations, CFD or full-scale 
experiments are preferable. 

Flow elements have been implemented in the Swedish software for indoor and 
climate simulation tool IDA ICE (Eriksson et al. 2012) . This tool assumes that 
when two flow elements collide, the one with the highest velocity will “survive”. 

Flow elements are also used in the flow program DIMcomfort, developed by the 
ventilation company Lindab. The airflows from their diffusers are shown with the 
ability to regulate airflow and temperatures to see how this influences the flow 
pattern in the room. Lindab’s tool has been developed through measurements in an 
air laboratory and is specific for Lindab’s diffusers, and this shows the possibilities 
of using flow elements for fast simulation and comprehensive visualisation of 
airflows in rooms. 

The description of flow elements is continuously growing, covering more flows and 
interactions. Cao et al. (Cao, Ruponen, and Kurnitski 2010) have recently 
contributed to the description of flow elements describing the velocity distribution 
when a plane jet collides with a corner.  

Of the three methods described here, flow elements and zonal models are the most 
promising in connection with simulations of thermal comfort based on building 
energy simulations. 

THE PERSONAL FACTORS: CLOTHING AND ACTIVITY LEVEL 

Two of the six parameters affecting global thermal comfort are related to the 
occupants and are outside the range of the engineer’s optimisation. These are the 
clothing and activity levels. 

In building simulations, occupants are often assumed to have one of two fixed 
clothing levels: one for summer conditions and one for winter conditions, typically 
0.5 clo and 1.0 clo. 

To investigate how variation in clothing affects the building’s energy demand, G.R. 
Newsman (Newsham 1997) performed building energy simulations with varying 
flexibility in the clothing adjustment and found that significant energy savings can 
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be obtained through optimal adjustments of clothing without compromising thermal 
comfort. G.R. Newsman used a simplified version of Fanger’s thermal comfort 
equation in a finite difference model.  G.R. Newsman concludes that it is vital to 
consider occupants’ behaviour when modelling buildings’ energy demand and 
thermal comfort.  

Through a literature review of field experiments, G.S. Brager and R.J. de Dear 
(Brager and de Dear 1998) find a distinction between thermal comfort in air-
conditioned vs. naturally ventilated buildings and conclude that the difference is 
caused by adaptation. Through adaptation of i.e. clothing, better thermal comfort is 
experienced in naturally ventilated buildings under the same circumstances as in air-
conditioned buildings. 

Several studies have investigated how people vary their clothing. A study in Sydney 
by C. Morgan and R.J. de Dear (Morgan and de Dear 2003) showed that people vary 
their clothing according to outdoor temperature when a strict dress code is not 
employed. During the warm summer of 2006 in Switzerland, Haldi and Robinson 
(Haldi and Robinson 2008) found that people mainly opened windows and 
adjustments of solar shading to improve their thermal comfort. Clothing was seldom 
varied during the day but the level of clothing was found to be correlated to the 
outside temperature at 6 a.m. Also, de Cali et al. (De Carli et al. 2007) found a 
correlation between clothing level and the outside temperatures the same morning 
and the previous days. In the same study, they found that the clothing level is 
independent of gender. 

None of the studies investigating the effect of adjusting clothing led to people being 
more satisfied with the thermal environment, but several studies show a better 
estimation of clothing level based on outdoor temperatures, than the two steady 
assumptions often used. 

Activity level is a way of influencing a person’s thermal environment; unfortunately 
the uncertainty of the activity level is high, both because it is difficult to measure 
and estimate for a given situation, and because the metabolic rate for the same 
activity varies among people. Uncertainty on the metabolic rate is typically around 
50% but can be as high as 100% according to Parsons and Hamley (Parsons and 
Hamley 1989). 

As the measure of thermal comfort, PMV is greatly influenced by both activity level 
and clothing. Havenith et al. (Havenith, Holmér, and Parsons 2002) question the use 
of PMV as a measure, because both activity level and clothing level are subject to 
high uncertainty. To determine the activity level, they list six methods ranging from 
measurements to classification according to the kind of activity in a table. The most 
accurate method has an accuracy of 15%, and Havenith et al. find that a difference in 
activity level of 15% can easily lead to a difference in the calculated PMV of 0.3. 
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The comfort categories suggested in ISO 7730 (CEN 2005) are, therefore, 
questionable. 

In conclusion only few studies were found on activity level in connection with 
thermal comfort and they show that the activity level is hard to estimate. To improve 
simulation of thermal comfort, more research in this area would be beneficial, e.g. 
starting with a thorough literature review focused solely on activity level and 
including physiologic journals and researchers. 

DEALING WITH UNCERTAINTIES 

Simulations of thermal comfort and building simulations in general are subject to 
uncertainty, especially due to occupant behaviour. This means that the results of the 
simulations are only valid if we have correctly assumed how people will act, which 
is nearly impossible in real life.  

For a known set of indoor climate conditions, the predicted mean vote (PMV) can be 
calculated from the equations in ISO 7730 (CEN 2005). Taking into consideration 
that not all votes are equal to the mean, Jensen et al. (Jensen, Toftum, and Friis-
Hansen 2009) made a Bayesian network between the thermal conditions in a room, 
gender, age and thermal vote based on the ASHRAE RP-884 database (de Dear 
1998). The Bayesian network gives the probability of each thermal comfort vote 
when thermal conditions, gender and age are known. By using the Bayesian 
network, the uncertainties associated with human behaviour are included in the 
simulations. 

Hoes et al. (Hoes et al. 2009) evaluated the effect of user behaviour on building 
performance with the aim of creating a tool to help make buildings that are more 
robust to the influence of user behaviour. The background of the study is that the 
more energy-efficient buildings become, the higher the impact of users gets on the 
buildings’energy consumption. User behaviour is modelled using a Monte Carlo 
approach together with the building simulation tool ESP-r, and they find from 
simulations of five test cases that improved modelling of user behaviour can 
optimise the overall building performance. 

These two examples show that the handling of uncertainties in building energy 
simulation tools is definitely possible, whether it is using a Bayesian network or the 
simpler Monte Carlo approach. 

CONCLUSION 

For optimisation of thermal comfort in parallel with building energy optimisation, 
the methods described by Fanger were found to be most adequate. The methods 
make it possible to spot causes of thermal comfort problems, but are also the most 
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complicated and uncertain to calculate as several of the input parameters are not 
direct outputs from building energy simulations. 

A closer look into four building energy simulation tools, which claim to be able to 
calculate PMV and PPD, showed that inputs were needed by the user on e.g. view 
factors, air velocities, clothing and activity level. 

Based on the review, it looks promising to develop methods for automatic 
calculations of view factors, air velocities and clothing level from output parameters 
from building energy simulations. The activity level was found to be highly 
uncertain and to vary among people. In the investigated literature, there no studies 
were found on the variation in activity level in a way that could be used for building 
simulations. 

Several studies on dealing with uncertainties in building simulation because of 
uncertain occupant behaviour were found and the methods also apply to simulation 
of thermal comfort. 

It is therefore recommended to expand building simulation tools with calculation of 
thermal comfort based on the work by Fanger to assist designers in optimising 
buildings with regards to energy and thermal comfort simultaneously. 
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The second article presents the research on clothing level, how it varies with time 
and among people. The article also explores the possibilies of taking into account 
thermal adaptation through adjustment of clothing, when calculating thermal 
comfort.
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SUMMARY 

In the same room, people will wear different amounts of clothes if there is no strict 
dress code. Ideally everybody would put on just the right amount to feel thermally 
comfortable, but that is not always the case. To improve simulations of thermal 
comfort, an estimate of clothing insulation is needed. This includes the distribution 
within a group of people and if this causes more or less people to be dissatisfied. 
From the research data, the relation between temperature and clothing insulation was 
found and the distribution among people was studied. It was found that the variation 
in clothing among people is higher at low temperatures than at high temperatures, 
and that people do choose their clothing according to thermal preference, but that the 
distribution of thermal comfort votes is the same.  

INTRODUCTION 

Improving comfort is one of the main reasons for the development of both buildings 
and clothing. Basic needs were fulfilled centuries ago, and refinements are no longer 
made just to improve comfort, but also to promote an image by making eye catching 
buildings and fashionable clothing. At the same time, we still expect to be thermally 
comfortable in buildings. To ensure thermal comfort in future buildings, prior 
simulation of thermal conditions gives an opportunity to compare different layouts 
of the buildings in order to optimise both thermal comfort and energy consumption. 
To get the most reliable simulations of thermal comfort, the variation and 
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distribution of clothing insulation of the occupants is essential, as it has a great 
influence on the perceived thermal comfort. If we can understand how clothing 
insulation varies over time, with the factors already known from the building energy 
simulation tools, the simulation results would come closer to reality. But also the 
distribution in clothing insulation within a group of people is interesting, and a 
hypothesis tested in this paper is that “when people choose their clothing, they will 
(to some extent) do it in relation to their thermal preferences, and that will result in 
less people being dissatisfied with the thermal climate, than can be calculated by the 
relation between Predicted Mean Vote (PMV) and Predicted Percentage of 
Dissatisfied (PPD) as found by P.O. Fanger (Fanger 1970)”. 

The calculation methods developed by P.O. Fanger (Fanger 1970) are based on 
climate chamber observations where subjects were exposed to the same thermal 
climate with the same amount of clothing and activity level. From the studies, 
variations in thermal preference was found, and these are the reason for PPD being 
equal to 5% at optimum thermal conditions, PMV = 0. In the adaptive thermal 
comfort model (de Dear and Brager 1998) both activity level and clothing insulation 
is taken out of the equation, which is much more simple than Fanger’s model. The 
adaptive model is based on data from real buildings and not climate chambers, and it 
is part of these data that were used in the study together with some of Fanger’s data. 
By finding the variation of clothing insulation over time, this part of the adaptation 
should be possible also to simulate by using PMV and PPD, giving a more reliable 
result compared with using a standard clothing level of e.g. 1.0 in winter and 0.5 clo 
in summer. 

The variation in clothing insulation was earlier found to be independent of sex (De 
Carli et al. 2007) and more dependent on the outside temperature in the morning and 
the previous days. 

In the current study, the relation between clothing insulation and both indoor and 
outdoor temperatures is studied. The relation to the current indoor temperature is 
relevant if assuming that users know their buildings and choose their clothing 
according to their expectations and adjust according to the climate they perceive. 
The study also covers whether the distribution in clothing depends on thermal 
preference and whether this leads to less people being dissatisfied. 

METHODOLOGIES  

The database from the RP884-project (de Dear 1998) was used. Only class 1 
projects contain information on clothing insulation. The class 1 data in the RP884 
project come from 15 projects including 62 buildings in Canada, Australia and USA, 
in both summer and winter conditions. The buildings are used for office, court, 
police and jail with activity levels between 1 and 1.8 met. 



DOES VARIATION IN CLOTHING MAKE US MORE THERMALLY COMFORTABLE?.  

47 

 

Data were deleted where information on clothing level, activity level or vote of the 
thermal climate were missing, and also where clothing was set at 0 clo (naked). 

The data were divided on buildings with and without mechanical cooling. In turn, 
these data were divided by different parameters: operative temperature, outside 
morning temperature, insulation level of clothing, etc. One or two parameters were 
used to divide the data each time, to see how the variation was relative to the 
parameters. In each subgroup, mean and standard deviation was calculated. This 
gives a picture where each temperature step is weighted equally even though they 
did not contain the same amount of data. Subgroups containing less than 10 data 
points were not taken into consideration. 

Example: To investigate the influence of operative temperature on the level of 
clothing insulation (including chair), the data was divided according to the operative 
temperature inside the building with steps of 1°C, and within each step a mean value 
of the insulation was calculated together with the standard deviation. The data point 
23°C includes incidences where the operative temperature had been ≥22.5°C and 
<23.5°C.  

The distribution of the amount of data within each temperature step of the operative 
temperature is shown in Figure 6, together with the distribution on the outside 
temperature at 6AM.  

 

Figure 6 Amount of data within each temperature interval 

Histograms showed that most data were collected at the operative temperatures of 
22°C and 23°C. More variation was seen in relation to the outside temperature, 
where most data were found between 5°C and 18°C. 
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The first investigation aimed to find a relation between clothing insulation and a 
parameter known or calculated in a building simulation program, in order to be able 
to make better predictions of the thermal comfort in future buildings. 

Secondly the distribution of clothing insulation among the subjects was investigated, 
to see whether it reflected a wish to improve thermal comfort, and whether taking 
the distribution into consideration it would give less standard deviation on subjects 
vote on the ASHRAE scale, that ranges from -3 (cold) to 3 (hot). 

RESULTS AND DISCUSSION 

CLOTHING INSULATION VARIATION WITH TEMPERATURE 

When a person decides how much clothing to put on, this depends on a lot of factors 
where both fashion and thermal comfort are surely some of them. While it is hard to 
simulate how fashion influences the clothing level, it is easier to evaluate the 
influence of the wish to gain thermal comfort. 

As it is often in the morning that an outfit is chosen, the temperature at that time of 
day could very well influence how much clothing is put on. This parameter has 
earlier been found to be a good indicator of the amount of clothing (De Carli et al. 
2007). In Figure 7, the insulation of clothing and chair is illustrated in relation to the 
outside temperature at 6AM for buildings with and without mechanical cooling. 

For both types of buildings, there is a clear relation between the outside temperature 
at 6AM and the mean of the chosen clothing insulation. There was no clear 
difference between the building types. The standard deviation from the mean of 
clothing insulation were greatest for low temperatures, while at high temperatures 
each value was closer to the mean, which might be due to a lower limit of acceptable 
clothing at work places. 

The relation between the mean insulation (all buildings) and outside morning 
temperature can be described by: 

Equation 6 

83.00.9144 012,0 2
6  Rtclo AMoutmean  

Where clomean is the mean clothing insulation (including chair) and tout6AM is the 
outside temperature at 6AM. 
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Figure 7 Insulation of clothing and chair in relation to the outside temperature at 6AM. To 
the left, the mean within each temperature step is shown and to the right the standard 
deviation to the mean is shown for each temperature step. 

Another parameter that intuitively affects the chosen level of clothing insulation is 
the current temperature inside, the operative temperature. The relation between 
operative temperature and clothing insulation (including chair) is shown in Figure 8. 

 

Figure 8 Insulation of clothing and chair in relation to the current operative temperature. To 
the left, the mean within each temperature step is shown and to the right the standard 
deviation from the mean is shown for each temperature step.  

The clothing insulation related to the operative temperature inside shows a 
distinction between buildings with and without mechanical cooling, where people in 
buildings without cooling (which include buildings with natural and mixing 
ventilation) put on more clothing, than people in buildings with cooling (AC). Both 
building types show a linear relation under 25°C and a constant level above 25°C. 
The standard deviation to the mean (right figure) showed that there was more 
variation in clothing at low temperatures than at high temperatures and it also looked 
as if the variation was higher in buildings without cooling. Compared with the 
standard deviations seen in Figure 7, the standard deviations here are lower. 
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Equations for the calculation of clothing insulation related to the operative 
temperature were divided into buildings with and without cooling and below / above 
25°C. 

With cooling: 

Equation 7 

0.0552 ∙ 2.486 for 25°C 0.95
0.65 for 25°C

 

Without cooling: 

Equation 8 

0.0858 ∙ 2.8294 for 25°C 0.96
0.69 for 25°C

 

The equations calculating the relation between clothing insulation and operative 
temperature have a square error closer to 1 than the one found in relation to the 
morning temperature. The standard deviations from the mean values (right hand side 
in Figure 8) in each temperature step were also smaller. These are indicators that the 
operative temperature is a better predictor for clothing insulation. 

These equations can be used when estimating the clothing insulation for calculating 
PMV in for example building energy simulation tools instead of using a single or a 
few different values during the year. 

Clothing insulation distribution among people 

Even though equations were found that could calculate the mean clothing insulation 
within each temperature step, there is still the distribution of clothing insulation 
within a group of people. To illustrate how PMV and PPD vary with clothing 
insulation, an example was calculated with average values from the whole data set: 

M = 1.2 met    C = 0.78 clo   tair = 23.0°C    trm = 23.2°C    u = 0.14 m/s    rh = 0.45 

where M is the metabolic activity, C is the clothing insulation, tair is the air 
temperature, trm is the mean radiant temperature, u is the air velocity and rh is the 
relative humidity. 

With the given values, PMV is -0.09 and PPD is 5%, a more or less perfect situation. 
If we then vary the clothing insulation by 0.25 which is close to the average standard 
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deviation in Figure 8, PMV ranges from -0.6 to 0.3, giving a PPD’s of 12% and 7% 
respectively. If varying by the standard deviation in Figure 7, which is 
approximately 0.35, PMV ranges from -0.8 to 0.4 and PPD at 19% and 8%.  

The distribution of clothing insulation between subjects might be due to their 
thermal preference, and then there would actually be less dissatisfied people. To 
evaluate whether this is the case, we can start by looking at the differences in 
clothing insulation between people in cooled buildings and non-cooled buildings. 
Looking at the calculated PMV in each temperature step, as well as the subjects’ 
actual votes within each temperature step, the mean values are shown in Figure 9. 

 

Figure 9 Relation between the mean calculated PMV and the operative temperature, as well 
as the mean actual vote by the subjects and the operative temperature. 

The difference in clothing insulation level between building types cannot be found 
in the thermal sensation. Both the calculated PMV and the actual votes showed no 
distinction between building types. Combined with the earlier findings shown in 
Figure 8, this indicates that the thermal climate in the buildings without cooling is a 
bit chillier and more clothing is necessary. 

To get a closer look at the influence of clothing on the perceived thermal comfort, 
data were divided according to clothing level. Here there was no distinction between 
the building types, as the data in each subgroup would then be too small. 

The relation between operative temperature, clothing insulation and PMV is seen to 
the left in Figure 10, and the relation to the actual vote to the right in the figure. 
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Figure 10 Relation between operative temperature, clothing insulation and PMV to the left 
and the relation to the actual vote to the right. 

As opposed to the relation between building types in Figure 9, there is a clear 
distinction in the calculated PMV in Figure 10 between the different levels of 
clothing insulation, the less insulation the lower the calculated PMV. This means 
that the differences in clothing level is not just to compensate for differences in the 
thermal comfort, because the result is a clear distinction in PMV and a clear relation 
between the insulation level and the PMV. 

The relation to the actual votes is interesting in order to see whether (some of) the 
variation was due to optimising the perceived thermal comfort. To the right in 
Figure 10 it is seen that there is no clear distinction between the levels of insulation. 
So independent of their clothing insulation, people have more or less the same mean 
value of votes on the ASHRAE scale, which indicates that people (at least to some 
extent) vary their clothes in relation to their thermal preference. But as can be seen 
in Figure 11, the division into clothing levels does not lower the standard deviation 
on the thermal votes by the subjects. On the right in the figure, standard deviation 
when dividing into building type can be seen for comparison. 
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Figure 11 Standard deviations to mean values in each temperature step for the actual votes of 
subjects, divided by clothing insulation to the left and building type to the right. 

A division according to clothing level does not give a lower standard deviation in 
the thermal votes. To quantify the standard deviation in Figure 11 the standard 
deviation on the data used to make the calculations for PPD (Fanger 1970) are 
shown in Figure 12 along with the mean votes according to ambient temperature. 

 

Figure 12 Plots of the data used by Fanger for PPD calculation from PMV. 

At the same clothing and activity level in a laboratory, the standard deviation on the 
thermal votes was less than 1, while it was a bit higher in the plots in Figure 11. So 
even when taking insulation of clothing into consideration, we must still expect (at 
least) the same level of dissatified as was found from laboratory studies under a 
clothing insulation dictated by the test setup. 

CONCLUSIONS 

A study of the RP884 database showed that the clothing level of the people in a 
building has a linear correlation with both the temperature outside at 6AM and the 
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operative temperature inside. The correlation is better for the operative temperature, 
where a minimum clothing level is achieved at 25°C. 

People in buildings without air conditioning (including naturally ventilated 
buildings) put on more clothing than people in air-conditioned buildings. This does 
not lead to higher PMV though, so the higher insulation must be to compensate for 
higher air velocities. 

In general, looking at all buildings together, there is a variation in clothing which is 
higher when it is cold and a bit lower when it is warm. The variation gives a 
variation in the calculated PMV, higher PMV for high clo-values, but when looking 
at the actual votes, there is no correlation with the insulation; people perceive the 
thermal comfort the same way. This indicates that the distribution in clothing is due 
to people’s different thermal preferences. 

In the hypothesis, it was established that by taking the distribution in clothing among 
people into consideration a better estimate of thermal comfort would be achieved. 
However even when looking at the thermal votes, divided on clothing insulation, the 
same standard deviation was found, as when taking them all together. This means 
that even though we can see that people vary their clothing to get better comfort, the 
variation in thermal votes is not just dependent on this. The variation in clothing is 
still big, because there are also other reasons, like fashion, for varying the insulation. 

To obtain a better understanding of the variations in thermal votes, more studies 
need to be carried out. Until then the variation of clothing insulation with operative 
temperature can be used for calculation of PMV in building energy simulation tools 
and other places, with the same expected percentage of dissatisfied as described by 
Fanger.
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The next article researches the simulation of air velocities for use in thermal comfort 
evaluations.
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ABSTRACT 

Flow elements combined with a building energy simulation tool can be used to 
indicate areas and periods when there is a risk of draught in a room. The study tests 
this concept by making a tool for post-processing of data from building energy 
simulations. The objective is to show indications of draught risk during a whole 
year, giving building designers a tool for the design stage of a building. 
The tool uses simple one-at-a-time calculations of flow elements and assesses the 
uncertainty of the result by counting the number of overlapping flow elements. The 
calculation time is low, making it usable in the early design stage to optimise the 
building layout. The tool provides an overview of the general draught pattern over a 
period, e.g. a whole year, and of how often there is a draught risk. 
 

INTRODUCTION 

Draught is one of the main causes of complaints about the indoor environment in 
buildings (Fanger et al. 1988). When people perceive draught, they take action to 
avoid it. This may lead to higher energy consumption, e.g. by turning up the heat to 
compensate. By predicting the draught risk in the early design stage, the building 
design can be optimised for both low energy use and low draught risk. In naturally 
ventilated buildings, this is especially important, as the ventilation is integrated in 
the building envelope and is closely linked to the current outdoor climate. 
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Draught risk can be simulated by CFD, but this is time consuming and therefore not 
used. On the other hand, building energy simulation tools are available that are 
faster but lack information on airflows. The two tools have been linked (Beausoleil-
Morrison 2002) to supplement each other for thermal comfort simulation, but the 
CFD is slowing the process down. 

Another way of estimating draught risk is to use flow elements. Flow elements 
describe the airflow in a room by equations for velocity distribution and flow 
patterns. Flow elements are derived for a number of standard situations and can be 
divided into categories depending on e.g. isothermal / nonisothermal, 2D plane flow 
/ 3D flow, flow close to a wall or ceiling / free flow. Flow elements also describe 
flow by a cold down draught from a cold wall like a fully glassed wall (Nielsen 
1994, 1995). 

By using flow elements, velocities can be calculated in any affected point in the 
room and the accuracy in each point is not dependent on a grid or grid density. 
Using flow elements combined with building energy simulation tools, the draught in 
the room can be estimated for a whole year for each time step. This makes it 
possible to evaluate not only worst-case scenarios, but also any other situation, 
giving an overview of the draught risk and a picture of how robust the chosen 
building design is against draught e.g. under different weather conditions. 

FLOW ELEMENTS FOR INLETS 

Equations for calculating air velocity decays and flow patterns by flow elements 
constituted the basis of the method. Inputs were needed on room geometry, air 
temperature, and furthermore the inlet geometry, location, air velocity, air 
temperature outside and/or surface temperature (depending on the type of flow) were 
needed for each flow to be evaluated. These data are typically available from 
building energy simulation tools. 

For some typical inlets, the velocity in the centre of a jet at a given distance x can be 
calculated by: 
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  3D jet Plane flow (2D) 

Free jet 

Equation 9

√2
⋅ ⋅  

Equation 10

√2
⋅ ⋅  

          

         Wall jet 

Equation 11 

	 ⋅ ⋅  

Equation 12

	 ⋅ ⋅  

 
Where ux is the velocity in the center of the jet, a0 is the area and h0 is the height of 
the opening, x0 is the distance to the virtual origin of the flow at the opening; Ka and 
Kp are constants depending on the inlet opening.  

The velocities outside the centre of the jet are calculated from the universal velocity 
profiles shown in Figure 13. 

 

Figure 13 Universal velocity profiles for a free jet and a wall jet, the latter found by Verhoff 
(Verhoff 1963) . 

The flow pattern of a jet mainly depends on the Archimedes number and the location 
of the inlet. The air will be accelerated downward by gravitational forces if the 
supply air is cool. Koestel (Koestel 1955) found that a free horizontal jet follows a 
trajectory given by: 
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Equation 13 

0.6 ⋅ ⋅ ⋅  

Where y is the vertical displacement of the flow at distance x, Ar is the Archimedes 
number. 

If the inlet is close to the ceiling (wall jet), the coanda effect will prevent the air jet 
from following the trajectory in Equation 13. Instead the jet will be attracted to the 
nearby ceiling until gravitational forces become greater than the pressure forces 
from the coanda effect. The distance from the inlet to this point is called the 
penetration length and (Grimitlin 1970; Nielsen and Möller 1987, 1988) derived the 
equations for the calculation of the penetration lenght: 

3D jet: 

Equation 14	
	0.19 ⋅ ⋅ ⋅ . ⋅ 	 	  

Plane flow (2D):  

Equation 15 

0.1 ⋅ ⋅ ⋅ . ⋅  

Where xs is the penetration length, Ksa and Ksp are constants depending on the room 
and heating distribution.  

When the jet detaches from the ceiling, it will not follow the trajectory given for a 
free jet (Equation 13). The results in (Jacobsen et al. 2002) show that the flow can be 
approximated with a straight line at an angle of 45° to the ceiling. However, the air 
will fall directly down if the inlet temperature is so low that the jet is not attracted to 
the ceilling.  

The four trajectories that a wall jet can follow depending on the penetration length 
are shown in Figure 14. 
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Figure 14 A wall jet comming into a room is assumed to follow one of four trajectories, 
depending on the penetration length. The dashed lines represent the parts of the flow that still 
need to be implemented in the draught risk index tool. 

FLOW ELEMENTS FOR A GLASSED WALL 

A fully glassed wall can induce a cold down draught that will continue at the floor 
similar to displacement ventilation. The velocity at the floor depends on the distance 
to the wall and the height of the wall (Heiselberg 1994): 

Equation 16 

	

0.055 ⋅ ⋅ , 	for			 0.4	m

0.095 ⋅
⋅ ,

1.32
																for			0.4	m 	 2	m

0.028 ⋅ ⋅ , for			2	m

 

Where H is the height of the cold wall, ,  is the air temperature in the occupied 
zone,  is the inside surface temperature of the window and x is the distance 
to the wall. 

DRAUGHT RISK INDEX TOOL 

A tool for calculating the draught risk was made for post-proccesing of data from a 
building simulation tool. 

By using flow elements, velocities can be calculated in any affected point in the 
room and the accuracy in each point is not dependent on a grid or grid density. To 
get a picture of the velocity distribution in the room, a grid was used and velocities 
were calculated in each node. 

If more flow elements were present in the room, each flow was calculated 
individually, not taking into consideration the effect of the other flows in the room. 
The velocities in each node were compared and the highest used to estimate the 
draught risk. In each node, the number of flow elements was counted, if the 
velocities were above a certain threshold limit. This was used as a measure of the 
uncertainty of the calculations. 
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PRESENTATION OF THE RESULTS 

For each time step, the results can be visualised as a plot on the floor plan. At each 
node on the floor, the maximum velocity was found in the column from the floor to 
the top of the occupied zone; the principle is shown in Figure 15. Depending on the 
maximum velocity, the draught risk in each area was ranked as no (white), low 
(green), medium (yellow) or high (red). 

 

Figure 15 Draught risk is estimated in the nodes of a grid structure and the highest value in 
each column is plotted on the floor plan. 

The same was done for the number of flow elements meeting where the maximum 
number of flow elements in a node was shown on a floor plot. The more flows that 
meet, the more uncertain both the calculated risk of draught and the areas in the 
room, where the flows causes risk of draught. 

For longer periods, the results were summed showing the draught risk index and 
number of meeting flow elements as percentages of the floor area. These plots can 
be used to point out periods of interest.  

EXAMPLE: OFFICE WITH NATURAL VENTILATION 

An office with natural ventilation was modelled in the building energy simulation 
tool BSim (Wittchen, Johnsen, and Grau 2013) using a Danish weather datafile. The 
room is shown in Figure 16 together with a brief description.  
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Figure 16 The room as simulated in BSim. Inside dimensions of room: height 3 m, length 8 m, 
width 5 m. There are two openable windows, each with a controlled opening area at the top 
of up to 0.33 m2. The end wall is fully glassed. 

From BSim, data were extracted for the draught-risk index tool. These were: indoor 
and outdoor air temperatures, interior window surface temperatures, airflow 
velocities through the window openings and opening area of the windows, all 
extracted for each time step. For the openanble windows Ka was set to 5 (Equation 
11, Equation 13 and Equation 14) corresponding to a poor inlet device for mixing 
ventilation. Ksa was set to 1.5 (Equation 14), which corresponds to heat release in the 
floor area. The height of the occupied zone is set to 1.8 m. 

For an hour in May the following parameters were found by BSim: tin = 21.4°C, tout 
= 11.8°C, u0 = 0.28 m/s, a0 = 0.073 m2, twindow = 19.7°C. 

The velocity distribution generated by each of the openable windows was calculated 
by the flow element of a 3D wall jet. In Figure 17 velocities in a vertical cross-
section through a window are shown together with the maximum velocity in the 
occupied zone projected onto the floor plane. Velocities below 0.05 m/s are plotted 
with white colour (no risk), velocities of 0.05 – 0.1 m/s are shown in green (low 
risk), velocities of 0.1 – 0.2 m/s are shown in yellow (medium risk) and velocities 
above 0.2 m/s are shown in red (high risk). The flow from the other openable 
window is identical. 
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Figure 17 The left figure shows the velocity distribution calculated in the central plane of one 
of the openable windows. The flow enters in the top corner of the room and attaches to the 
ceiling for approximately 2 meters before it drops into the occupied zone. The middle figure 
shows the room seen from above with a marking of maximum velocities in the occupied zone 
of the flow element from one of the openable windows. The right figure shows the velocity 
distribution in the room created by down draught from the glassed wall, projected down onto 
the floor plan. 

The incoming airflows from the windows create velocities in the occupied zone 
resulting in medium risk of draught in two small areas of the room and low risk in 
areas that are slightly larger. 

In Figure 17 on the right, the draught risk created by the cold glassed wall is shown. 
The glassed wall creates a down draught due to temperature difference, and the flow 
continues at floor level, with the highest velocities closest to the wall.                     

 

Figure 18 The left shows the maximum velocities in the occupied zone from all of the three 
flow elements, projected down onto the floor plan. The right shows the number of flow 
elements meeting in each area. 

 
The results for all three flows were given in one plot, Figure 18 left. This plot shows 
the maximum risk of draught in each area, as calculated by flow elements one at a 
time. There is a low risk in most of the room and a medium risk close to the glassed 
wall and in two areas inside the room caused by airflows from the windows. 

The estimated uncertainty of the flow element calculations was evaluated by 
counting the number of velocities above a threshhold of 0.05 m/s in each node, and 
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for each column the maximum number is projected down onto the floor, Figure 18 
right. 

In the two small areas of the room, shown in yellow in the right plot of Figure 18, 
both the openable windows and the glassed wall generates risk of draught in the 
same nodes. This is because the flow from the windows reaches the floor in these 
areas. Actually the areas could be bigger, as the tool at the moment does not handle 
how the flow from the windows continues after it reaches the floor. 

As a summary of the draught risk over a longer period, the areas of the risk intervals 
(Figure 18 left) were found for each time step and can be shown, e.g. over a week in 
May as seen in Figure 19. The same is done for the uncertainties as seen in the right 
part of Figure 19. 
 

 

Figure 19 Summary of the draught risk over a longer period of the velocity distribution (left) 
and meeting flow elements (right) in the room. The room areas divided into risk intervals in 
each time step, here one hour. 

During this week in May, most of the time there was a low risk of draught in about 
90% of the room area and medium risk in the remaining area of the simulated room. 
Only in a short period do more flow elements meet. 

DISCUSSION AND CONCLUSION 

The developed tool uses inputs generated by building energy simulation software to 
give an overview of how often and where there is a risk of draught in a room. The 
tool is simple in the sense that it handles one flow element at a time and when flow 
elements meet, the one generating the highest velocity is used to estimate the 
draught risk.  
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Flow elements are developed for simple geometries and when using them on more 
complex inlets and room geometries, the calculated velocities and flow patterns will 
only be estimates, even with just one element present. If flow elements are 
oppositely directed or have co-flow, there is no description of what occurs and the 
uncertainty is therefore higher. In the tool, this is handled by plotting the number of 
meeting flow elements, so that the user can realise that the calculations are 
uncertain. The idea of the tool is not to make highly precise estimates for any time 
step, but to give an overview of when and where draught may be a problem. 

From the plots produced by the tool, it should be possible to conclude one of three: 
(Green) There is a low risk of draught and the uncertainty is low – the design is 
acceptable, (Red) There is a high risk of draught – the design should be changed, or 
(Yellow) There is a risk of draught or the uncertainty is high – either change the 
design or make further investigation e.g. by CFD.  

Further work needs to be put into the tool to cover more flow elements and for 
calculating the parts of the flow market with dashed lines in Figure 14. 
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The next article researches the calculation of thermal radiation, which is the last of 
the parameters chosen for further research. Thermal radiation affects both global 
thermal comfort and local thermal discomfort due to radiant asymmetry. The article 
researches how thermal radiation to a person in a room can be calculated and 
describes a method for the calculation of view factors to the surfaces in a room.
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ABSTRACT  

The inclusion of thermal radiation within buildings is a significant component of 
thermal comfort. Typically the methods applied for calculating view factors between 
a person and its building surfaces requires great computational time. This research is 
about developing a view factor calculation method suitable for building energy 
simulations. The method developed calculates view factors by numerical integration 
of projected area factor. 

Over time the projected area factor of a person has been simplified by geometrical 
shapes. These shapes were compared with more complex equations on both 
precision and calculation time. The same was done for the resulting view factors, 
where the results were compared with view factors found by ray tracing. While 
geometrical simplifications of the human body gave the fastest calculations, the 
complex equations gave the most accurate results. 

Non-rectangular surfaces and obstacles are treated by comparing intersection points 
with the edges of the surface, making the method applicable to rooms with complex 
geometry. The method for calculating view factors is robust and applicable to 
building energy simulation tools. Calculation time can be long depending on the 
complexity of geometry, grid-size and the choice of method for the projected area 
factor, but view factor calculations has to be done only once for a for a whole year 
simulation. 
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INTRODUCTION 

Thermal radiation accounts for a substantial part of thermal comfort, and knowledge 
on radiation is therefore vital when simulating thermal comfort in buildings. To 
comply with legislation, architects and engineers work to optimise the building 
design in order to obtain lower energy consumption. Thermal comfort is often 
ensured by constraining variations in operative temperature in the energy 
optimisation process; but better measures would be predicted mean vote, PMV, or 
predicted percentage dissatisfied, PPD, and percentage dissatisfied, PD, calculated 
in a grid, to cover differences in the room. The overall goal is to be able to optimise 
the thermal comfort of the occupants in parallel with the buildings’ energy 
consumption and the major objective is to describe a method for calculating view 
factors between persons and surfaces in a room for use in calculations of mean 
radiant temperature and radiant asymmetry. 

By improving the calculation of thermal comfort in building energy simulation 
programs, it is possible to see the consequences on the thermal comfort when 
changing the building design, not just as an average in a room but on a number of 
different points, taking more aspects into consideration than the operative 
temperature. It is especially important in buildings with a complex geometry, where 
mean radiant temperature and radiant asymmetry varies in the room and an area-
weighted mean of surface temperatures is far from accurate.  

Global thermal comfort is calculated as the energy balance of the whole body, 
affected by 6 parameters: air temperature, mean radiant temperature, air velocity, 
relative humidity, clothing level and activity level (Fanger 1970). Local thermal 
discomfort can be caused by draught, temperature gradients, asymmetric thermal 
radiation and cool/warm floors (Fanger et al. 1985; Olesen et al. 1973).  

Previous work by the authors describe ways to improve the simulation of clothing 
level (Vorre and Jensen 2014) and air velocity and draught risk (Vorre, Jensen, and 
Nielsen 2014) for use in building energy simulation tools.  

The objective of this paper was to present a methodology for calculating thermal 
radiant impact on a person for better simulation of thermal comfort in building 
energy simulation tools. The method calculates view factors by integration of the 
projected area factor over the surfaces and can be used for any plane surface, taking 
account of obstructions in the room. The method also applies for view factors for 
calculating radiant asymmetry. The same basic method is used for calculations 
between surfaces and between surfaces and a person. 

For view factors involving a person, different methods and simplifications for 
calculating the projected area factor are compared, and the calculated view factors 
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are compared with other methods. The comparison is made on both results and 
calculation time. 

THEORY 

For the calculation of thermal comfort by using PMV or PPD and PD caused by 
radiant asymmetry, knowledge of the mean radiant temperature and radiant 
asymmetry are needed (Fanger 1970; Fanger et al. 1985). Mean radiant temperature 
is defined as that uniform temperature of a black enclosure which would result in the 
same heat loss by radiation as the actual enclosure under study. The definition 
covers both short wave radiation from the sun or a high-intensity radiant heater and 
long-wave radiation by emission from surfaces. This paper is focused on the latter 
while the impact on thermal comfort from short-wave radiation is treated by e.g. 
Karlsen (Karlsen et al. 2014). Radiant asymmetry is defined as the difference in 
mean radiant temperature for each side of a small horizontal or vertical plate at the 
person’s position in the room (Fanger et al. 1980). 

For comparing scenarios, the mean radiant temperature is an expression that is easier 
to relate to than a number of different temperatures of the surfaces.  

The mean radiant temperature at a specific location is found by calculating the heat 
transfer through radiation in the actual enclosure. The radiant energy exchange 
between a person and a surrounding surface is calculated as between any two 
objects:  

Equation 17 

→ 	 ∙ ∙ → ∙ ,	eff ∙ 	 →  

Where →  is the heat flow by radiation from object 1 to object 2 in W,  is the 
multiple of the emissivities of the objects, 	5.67 ∙ 10 		W/m K   is the 
Stefan-Boltzmann constant, →  is the radiation view factor or angle factor from 
object 1 to object 2 (how big an area does object 2 cover compared with the whole 
area that object 1 radiates to), ,	eff is the effective radiation area of object 1 in m , 

 is the surface temperature of object 1 in K,  is the surface temperature of object 
2 in K, 	 →  is the heat flow by radiation from object 2 to object 1 in W. 

  

Equation 17 is only valid if reflection can be disregarded; which is only a reasonable 
assumption when the emission of the surfaces is close to the emission of a black 
body, where all radiation is absorbed and none is transmitted nor reflected. This is 
the case for many building materials and items of clothing, though glass is an 
exception as its emissivity can be very low, also for long-wave radiation.  
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To calculate the radiant exchange to a person, we need to know the surface 
temperature of the person and the surrounding surfaces, their areas, emissivities and 
the view factors between them.  

The highest view factor is found when a surface surrounds a person, as the view 
factor of the surface is then equal to 1, as is the case for a sphere. The view factor is 
calculated from the projected area factor, and the projected area factor describes how 
much of an object is illuminated from a given point, as illustrated by the single light 
bulb in Figure 20.  

                 

Figure 20 To the left the projected area factor illustrated by the part of the body illuminated 
by a single light bulb. To the right the view factor to a wall illustrated by the part of the body 
illuminated by a wall of light bulbs. 

The view factor describes how much of the object is illuminated from a whole wall 
of light bulbs and can be found by integrating the projected area factor for each light 
bulb over the entire wall as illustrated to the right in Figure 20. 

For a person in a room, the sum of view factors to all surfaces equals 1.  

The projected area of a person can be illustrated by his silhouette and depends on the 
view point to the person. The view point is described by the azimuth angle, , and 
the altitude, , as illustrated in Figure 21.  

The effective radiation area of a person is the area that emits and receives radiation 
from the surroundings. This area is smaller than the total skin area of the body, as 
parts of the body do not exchange radiation with the surroundings, e.g. between the 
toes or under the arms. 
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Figure 21 The azimuth angle  and the altitude .  

A HISTORICAL VIEW OF VIEW FACTORS INVOLVING PERSONS 

Interest in the view factors between a person and surrounding surfaces arose in the 
late 1960s with HVAC systems and Fanger’s studies on thermal comfort (Fanger 
1970). Before then, studies on thermal radiation to persons were mostly done to 
calculate the impact on persons from direct solar radiation, because the military 
needed knowledge about the effect of the sun on soldiers (Breckenridge 1961). The 
first studies in the field were therefore not with the aim of describing view factors 
but merely the projected area factor of a person from different angles. 

In the 1930s, James D. Hardy and Eugene F. DuBois used a wrapping method to 
determine the effective radiation area of a person. A person was wrapped in paper 
like an Egyptian mummy, and the surface area was measured by rubber-coating the 
paper, a technique similar to the one used to measure the total area of the human 
skin also known as the DuBois area. The effective radiation area was found to be 
78.3% and 78.4% of the total skin area for the two persons they measured. (Hardy 
and DuBois 1938) 

In 1952, Guibert and Taylor used photographs to determine projected areas and the 
total effective radiation area. Photos were taken in a half sphere, with the person in a 
standing and a sitting position. The pictures were taken from a distance of 12 m and 
treated as though taken from an infinite distance, as would be the case with radiation 
from the sun. (Guibert and Taylor 1952) 

For calculating the projected area factor, a sphere represented a seated person and a 
cylinder represented a standing person. The relation between height and radius of 
the cylinder was found from observations. (Taylor 1956) 
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As the sun was the challenge, the sun was also used in the research, and the solar 
angles and shadows cast were measured for a standing person facing the sun and 
with the person turned sideways to the sun. (Chrenko and Pugh 1961) 

In 1966, the photographic method was used by Underwood and Ward on standing 
men and women. The pictures were taken from different azimuth and altitude, 
though with irregular steps due to their test fixture. The photos of 25 men and 25 
women were taken from a distance of 4.57 m. Underwood and Ward suggested an 
oval cylinder to represent a standing person in the calculations of projected area 
factors.  (Underwood and Ward 1966) 

The photographic method and test setup of Underwood and Ward were adopted by 
Fanger, who in his doctoral thesis described experiments involving 10 male and 10 
female test persons from northern Europe. All subjects were photographed from 78 
different angles with steps of 15 degrees. Photos were taken for both a standing and 
a seated position. Fanger presented his results for the projected area factor as 
diagrams in order to get closer to the actual geometry of the human body. He 
supplemented with diagrams for the view factor between person and surfaces in an 
orthogonal room. (Fanger et al. 1970) (Fanger 1970)  

Discomfort caused by asymmetric thermal radiation was investigated in a climate 
chamber where the surface temperatures could be regulated independently for the 
two half-parts of the room, for a suspended ceiling or other part surfaces.  In the 
experiments view factors between surfaces and persons were found by use of 
Fanger’s diagrams and in 1980 the term radiant temperature asymmetry is 
introduced. Radiant temperature asymmetry is defined as the difference in plane 
radiant temperature for a small plane element and is probably introduced in order to 
be able to make a direct measurement. (Fanger et al. 1980, 1985; Olesen et al. 1973) 

Diagrams for reading view factors to inclined surfaces were made in 1988 by use of 
cubic spline on Fanger’s results for the projected area factor.  (Steinman et al. 1988) 

In 1990, Horikoshi et al. made similar experiments as Fanger, but using an 
orthographic projection camera, where the parts of the person close to the camera 
are bigger than those further from the camera. This is in contrast to the earlier work, 
where an effort was put into measuring the projected area as seen from infinity. As 
surfaces and especially the floor are not infinitely far away, they argue that this 
method is more accurate especially when considering the heat exchange to floors 
with heating and in relatively small rooms. The results of Horikoshi et al. are 
presented as diagrams for reading view factors. (Horikoshi et al. 1990)  

In the beginning of the 1990s, the computer era affected the world of thermal 
radiation calculation and Fanger’s diagrams for reading both the projected area 
factor and the view factor in orthogonal rooms are put into algorithms. Just like with 
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the principle in Fanger’s diagrams for view factors, it is still necessary to divide all 
surfaces according to the centre of the person and categorise the divisions in front or 
behind, above or below the centre, on the side, vertical or horizontal. (Cannistraro et 
al. 1992; Rizzo et al. 1991) 

In 2000, algorithms for view factors to inclined surfaces were added (Nucara et al. 
2000).  

In the beginning of the new millennium, a study similar to Fanger’s was made in 
Italy on Italian subjects. The study involved more subjects and smaller angle steps, 
since digital photos and computer software measure the projected area of the persons 
in the photos much quicker than the manual measures taken 40 years earlier. The 
results showed fair agreements with the projected area factors for standing persons 
found by Fanger, but for seated persons the differences where significant. (La 
Gennusa et al. 2008) 

Apart from these methods, CFD programs and computer games use ray tracing for 
calculating radiation very precisely. Ray tracing has a longer calculation time and 
demands more input than the other methods.  

This paper suggests using numerical integration for calculation of view factors. The 
method was chosen because it is applicable for both person-to-surface calculations 
and surface-to-surface calculations. The method implies knowledge of the projected 
area factor of a person, or surface, as a function of the angle that the person is 
viewed from. 

The method can also be used to compute radiant temperature asymmetry, by 
calculating view factors for each side of a small horizontal and a small vertical plate. 
The correlations between radiant asymmetry and thermal comfort are described for 
the small plates, though during the studies the actual view factors to the heated or 
cooled surfaces were also calculated. By calculating view factors for a person, while 
keeping track of azimuth and altitude angles, it is possible to also compute thermal 
radiant asymmetry for an actual person, and the results were compared to the results 
using small plates. 

PROJECTED AREA FACTOR OF A PERSON – COMPARISON OF 
CALCULATION METHODS 

Over time the projected area of a person was simplified to geometrical shapes for 
easier use in calculations, e.g. spheres and cylinders. In this study, numerical 
integration is suggested for calculating view factors, and it is therefore interesting to 
compare the geometrical simplifications for calculation of the projected area factor 
to more complex algorithms on both precision and calculation time. 
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Comparisons were made for both standing and seated persons. The projected area 
factor of a seated person was calculated assuming a sphere, a cube and a box. A 
standing person was simplified to a cylinder and an oval cylinder. As more complex 
equations, the results by Rizzo et al. were used (Rizzo et al. 1991). Their equations 
are derived from original data provided by Fanger. Unfortunately, it was not 
possible to obtain access to the data found in the Italian experiments (La Gennusa et 
al. 2008), and the calculated values are therefore only compared with the data points 
from Fanger’s experiments.  

Only the results for standing persons are shown here. The equations for seated 
persons are used in the later comparison of calculated view factors. 

The simplest suggestion of a standing person is a cylinder. In Figure 22, the cylinder 
is compared with the results by Fanger. On the left, the cylinder is 1.65 m high and 
has a radius of 0.23 m as found by Taylor (Taylor 1956) and on the right, the 
cylinder was optimised by the least square error compared with Fanger’s data, 
height 1.11 m and radius 0.26 m. 
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Figure 22 Projected area factors of a standing person, calculated by using a cylinder as 
suggested by Taylor (Taylor 1956) and optimised according to Fanger’s results (thick/blue 
line) compared with the results of Fanger’s measurements indicated by the thin line with dots. 

A cylinder is axisymmetric and the projected area does therefore not vary with the 
azimuth angle; on the other hand it does have quite an identical behaviour for the 
altitude. 

An oval cylinder of 1.5 m in height, a large radius of 0.29 m and a small radius of 
0.19 m was suggested by Underwood and Ward (Underwood and Ward 1966). In 
Figure 23, the projected area factor of the original oval cylinder is compared with 
data points from Fanger on the left and on the right an optimised cylinder is 
compared, height 1.1 m, large radius 0.32 m and small radius 0.21 m.  
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Figure 23 Projected area factors of a standing person, calculated by using an oval cylinder 
as suggested by Underwood and Ward (Underwood and Ward 1966) and an optimised oval 
cylinder (thick / green line) compared with the results of Fanger’s measurements indicated by 
the thin line with dots. 

The oval cylinder has many similarities with Fanger’s results and depicts both the 
variations in azimuth and altitude. 

The last method for calculating the projected area factor in the comparison is the 
algorithm derived by Rizzo et al. (Rizzo et al. 1991) on the basis of Fanger’s results. 
The algorithm is a double variable polynomial where the azimuth angle is of degree 
4 and altitude is of degree 3. The algorithm is only valid for azimuth angles between 
0° and 180° and for the altitude between 0° and 90°. In Figure 24 the algorithm is 
compared to the results by Fanger. 
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Figure 24 Comparison of the projected area factor for a standing person as measured by 
Fanger (thin line with dots )and calculated using of the algorithm found by Rizzo et al.(Rizzo 
et al. 1991) (thick / red line). To the right is shown the behaviour of the algorithm outside the 
valid range. 

Of the three calculation methods (cylinder, oval cylinder and algorithm) the best fit 
is found by using the algorithm derived from Fanger’s data, as shown in Figure 24, 
though the algorithm shows less similarities at the front and back of the person 
(azimuth angle close to 0° and 180°) especially at low altitudes. The differences 
close to the limits of the valid range is due to the nature of the developed 
polynomial, as can be seen when plotting values outside the valid ranges, shown on 
the right side in Figure 24. 

The calculation time is the cost of achieving the higher precision by using the 
algorithm. While the oval cylinder is only a little slower than the simple cylinder, 
the algorithm’s calculation time is approximately 4 times that of the cylinders. For 
the calculation of view factors where a high number of calculations are needed when 
using the integration method. The calculation time may end up being an issue, 
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though for building energy simulation tools the calculation of angle factors are only 
done once for every position of the person, not at every time step. 

FROM PROJECTED AREA FACTOR TO VIEW FACTOR FOR A 
PERSON 

In this section, a methodology is described for calculating the view factor between a 
person and a plane surface of any geometry, the method can also be used between 
two surfaces and when other surfaces obstruct the radiation. 

A person receives and emits heat by radiation. If a person is placed in a sphere, all 
radiation from that person will hit the sphere, while not all of the radiation from the 
sphere will hit the person, as most of it will instead hit the sphere itself.  

If the radiation is diffuse, then: 

Equation 18 

∙ ∙  

Where   is the effective radiation area of a person in m2,  is the 
view factor from the person to the sphere (how much of the radiation leaving the 
person reaches the sphere),  4 ∙ ∙ 	 is the surface area of the sphere in 
m2,  is the view factor from the sphere to the person (how much of the 
radiation leaving the sphere reaches the person),  is the radius of the sphere in m. 

As all radiation leaving the persons effective radiation area reaches the sphere, the 
view factor from the person to the sphere is known: 1 , and 
Equation 18 can then be written as: 

Equation 19 

∙  

The view factor from the sphere to the person cannot be calculated directly. It has to 
be integrated over the surface of the sphere. 
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Figure 25 A person in the middle of a sphere. The small area dAsphere radiates diffusely in a 
sphere that is cut off by the sphere surrounding the person. 

If looking at the radiation from the small area  to the person, then  
radiates diffusely in a sphere. This radiation-sphere reaches the person at a distance 
equivalent to the radius, 	 , of the sphere, as illustrated in Figure 25. The view factor 
from  to the person is therefore the projected area of the person, projected, 
as seen from  compared with the total area of the radiation-sphere with the 
radius  cut off by the sphere surrounding the person, which also has the radius . 
The surface area of a sphere cut off by another sphere with equal radius is ¼ of the 
total surface area of the sphere. The view factor is then given by: 

Equation 20 

projected

1
4 ∙ 4 ∙ ∙

projected

∙
 

Where  is the view factor from the small area to the 

person, projected is the person’s projected area as seen from  in m2,  is the 
radius of the sphere in m. 

Most surfaces surrounding us are not spheres. If instead of looking at a sphere, we 
look at a plane rectangular surface with the area A, as shown in Figure 26, then this 
area can be divided into areas so small that it is reasonable to assume that the whole 
area dA has the same distance to the person, and it is possible to calculate it like for 
the sphere. 
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Figure 26 Person seated beside a plane rectangular surface. The surface is divided into small 
areas, dA, for which the projected areas of the person are calculated. 

For the small area dA, Equation 18 can be written as: 

Equation 21 

∙ ∙  

Because the person sees the small area dA under the angle ,	  the area that the person 
sees is ∙ cos	 , which means that the view factor from the small area dA to the 
person is 

Equation 22 

projected

∙
∙ cos	  

 can then be calculated as: 

Equation23 

∙ ∙
∙ ∙

∙

∙
1
∙

∙ ∙
∙

∙ ∙  

Where fprojected is the projected area factor of the person, which relates the projected 
area of a person to the effective radiation area of the person. Like the projected area, 
it depends on the azimuth and altitude from where the person is viewed. 

By integrating Equation23 over the surface, the view factor from the surface to the 
person can be found: 
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Equation 24 

1 ,
∙ cos ∙  

Where  is the radius of the sphere with the person in the centre and reaching dA or 
simply the distance between the person and dA,  is the angle between the line 
person–dA and the normal of the surface,   is the azimuth angle measured from the 
persons sight direction to dA,  is the altitude to dA from the person’s centre, 

 is the projected area factor. 

To calculate the view factor to the entire surface, the integral in Equation 24 must be 
solved, which cannot be done analytically. Instead it is solved numerically: 

Equation 25 

1 ,
∙ cos ∙  

1
∙

,
∙ cos ∙ Δ 	

 

1
∙

,
∙ cos ∙ Δ ∙ Δ  

The Simpson method is used for the numerical integration of Equation 25 and the 
procedure is described in the appendix. 

View factors for calculation of radiant asymmetry are found by setting the projected 
area factor to zero, when the azimuth angle is to the left/right of the person or the 
altitude angle is above/below zero.  

COMPLEX GEOMETRIES 

The described method of integration over the surface is only applicable if the surface 
is rectangular. If it is not, the method should be supplemented with extra 
calculations. 

For a non-rectangular surface, a rectangular surface is made that includes the whole 
surface, as shown in Figure 27. The rectangular surface is then divided by a grid for 
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the numerical integration and for each node it is checked, whether or not it is a part 
of the real surface. 

 

Figure 27 Example of a non-rectangular surface with the vectors constituting the edges of the 
surface. 

The position of all nodes is compared with the edge vectors of the real surface. If the 
node lays to the right of all edge vectors, it is within the surface. If the node lies to 
the left of just one edge, it is outside the real surface. The method is only valid for 
surfaces where all corner angles are less than 180°.  If this is not the case, the 
surface needs to be divided into smaller surfaces where all angles are smaller than 
180°. 

The process is quite slow, so to reduce calculation time the check for a node against 
edge vectors is stopped if the node is found to lie to the left of an edge, as there is 
then no reason to check against other edges. Furthermore, it is seen that when going 
perpendicularly through the rectangular grid, if one node is inside the real surface 
and the next is outside, then all the following nodes in that row or column will also 
be outside.  

If it is found that the node is outside the real surface, the projected area factor in 
Equation 25 of the subsurface is set to zero, otherwise the actual projected area 
factor is determined. 

In the case of a room with one or more surfaces that in reality have corner angles 
more than 180°, it is important to realise that the person can actually be positioned 
“behind” some of the surfaces in the room. In Figure 28, the person has a view 
factor of zero to surface d, because the person is positioned behind the surface. 
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Figure 28 L-shaped room seen from above with a person. View factor between person and 
wall d equals zero. The view factor to wall c is also zero, as radiation between the surface 
and the person is blocked by surfaces d and e. 

OBSTRUCTIONS BETWEEN SURFACE AND PERSON 

The method of comparing a point to the edges of the surface is also used to 
determine whether other surfaces are obstructing the view between a subsurface and 
the person. 

When calculating view factors between the person and surface b in Figure 28, the 
vectors between the person and each node on the surface are found. For each vector, 
it is checked whether the vector is blocked by another surface. If the intersection 
point of the vector on another surface is within the edges of the other surface, then 
the radiation is blocked, though only if the intersection point is between the person 
and the node. In Figure 28, radiation from surface b is partly blocked by both 
surface d and surface e, but as soon as it is found that the vector is blocked by one 
surface, there is no need to check intersection points with any other surfaces.  

The vector between a node on surface b and the person can intersect with surface f, 
but the intersection point lies outside the range of the vector and is therefore 
irrelevant. 

This is potentially a very slow process because all surfaces have to be checked, and 
consequently it is possible to simply disregard this step, if the room geometry yields  
that surfaces cannot block one another e.g. all corner angles are smaller than 180°. 

Secondly, before the calculations of view factors are started, the potentiel 
obstructing surfaces are found for each surface and only these surfaces are checked. 
In an L-shaped room as shown in Figure 28, walls “d” and “e” are the only walls 
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that can block radiation. The rest of the walls will never block radiation between a 
person and a surface, regardless of where in the room the person is positioned. 

VIEW FACTORS BETWEEN SURFACES  

Surface temperatures in a room depend on the exchange of thermal radiation 
between surfaces. Consequently, view factors between surfaces are also necessary 
for improving the calculation of the radiant part of an occupant’s thermal comfort. It 
is chosen not to take the obstruction by persons into consideration.  

Before the use of computers, diagrams were used to find view factors between two 
surfaces for a number of standard situations and even though they were indeed 
useful, it was also a puzzle when the building under study did not fit into these 
standard geometries. As radiant energy exchange is a challenge also in other 
industries, several geometries can be handled by use of geometric equations, but for 
use in building energy simulation it is difficult to make a general solution with the 
minimum of user interaction and knowledge in the specific field. 

Georg Walton tests different integration methods on both calculation time and 
precision, and further describes the method of integrating along the edges of the 
surfaces. His method integrates over any surface with corner angles of less than 
180°. Obstructions between surfaces are handled by dividing the surfaces into 
smaller parts based on shadow cast by the obstruction. (Walton 2002)  

In this paper it is chosen to use the same integration method for determination of 
view factors between surfaces as used for determination of view factors to persons. 
Because of the high irregularity of the human body, the method of integrating along 
the edges of the surfaces is not applicable when persons are involved.  In order to 
determine the view factor between two surfaces, area integration of both surfaces is 
necessary and the Simpson method is therefore used twice. 

For geometries other than rectangular surfaces, an orthogonal grid is still used and a 
check is made to determine whether a given point is part of the actual surface. The 
same method is used when other surfaces or objects obstructs parts of the radiation 
between two surfaces. 

For radiation between any two objects the following interaction applies: 

Equation 26 

→ ∙ → ∙  

Where →  is the view factor from object 1 to object 2 (how much of the radiation 
leaving object 1 that reaches object 2),  is the area of object 1, →  is the view 
factor from object 2 to object 1, and  is the area of object 2. The view factor states 



RADIATION EXCHANGE BETWEEN PERSONS AND SURFACES FOR BUILDING ENERGY SIMULATIONS.  

87 

how much of the total radiation from one object that reaches the other object and is 
therefore a factor between 0 and 1. 

For two surfaces the view factor from surface 1 to surface 2 can be calculated as: 

Equation 27 

→
1
∙ ∙

	 ∙
cos ∙ cos

∙ ∙  

Where  is the area of surface 1,  is the area of surface 2,  is the distance 
between and ,  is the angle between the normal to surface 1 and the line 
between and , and  is the angle between the normal of to surface 2 and the 
line between and . 

The integral is solved numerically: 

Equation 28 

→
1
∙
	 ∙

cos ∙ cos
∙ ∙

1
∙
	 ∙

cos ∙ cos
∙ Δ ∙ Δ  

The numerical solution is found by using the Simpson method twice and is further 
described in the appendix. 

CALCULATION EXAMPLE AND COMPARISON OF METHODS 

The described method was used for the calculation of view factors between a person 
and the surrounding surfaces in a room by using four different assumptions for 
calculating the projected area factor. The results were compared with the algorithm 
for direct calculation of view factors by Cannistraro et al. (Cannistraro et al. 1992) 
and results by using ray tracing in the CFD software ANSYS CFX.  

The calculations were made for a rectangular room with a seated person. The room 
geometry was chosen in order to be able to calculate view factors by the algorithm 
of Cannistraro et al. and the seated position chosen in order to compare results with 
a ray tracing model of a person modelled by a 3D laser scan of a thermal 
mannequin.  

The room is 3.60 m long, 2.76 m wide and 2.75 m high. The person is seated 1.2 m 
from the end wall and 1.38 m from the side walls, facing a side wall.  
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Figure 29 Sketch of the room used in the example with colour code for surfaces used in the 
diagrams.  

In the CFD software, the view factors were found by giving all surfaces in the 
enclosure the same temperature and applying a higher temperature to the person. 
The amount of heat received by each surface was then used to calculate the view 
factors.  

For each surface the view factor was found by numerical integration using four 
different methods for the calculation of the projected area factor of a seated person: 
the algorithm by Rizzo et al. based on Fanger’s results (Rizzo et al. 1991), a sphere, 
a cube and a box. The dimensions of the box were optimised for the best fit with 
Fanger’s data. 

The view factors were adjusted to sum up to 1 by dividing each calculated view 
factor with the sum of the view factors for the whole room. The calculated view 
factors are shown in Figure 30 and when comparing to ray tracing, the difference is 
shown in Figure 31.  

2.76 m 
3.60 m 

2.75 m 
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Figure 30 View factors calculated by using six different methods. 
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Figure 31. Difference between view factors calculated by ray tracing and five other methods.  

The view factors in the calculation methods based on Fanger’s work were the ones 
getting closest to the view factors found by ray tracing. The two simplest models, 
the cube and the sphere, differ the most. Complete agreement is probably not 
possible as the precise position of the seated person in the CFD model and the 
subjects photographed by Fanger could very well be different. 

Another significant difference between the methods is the calculation time. The 
calculations were made in MatLab with steps of 0.01 m for the integration methods. 
The longest calculation time was for the integration of the algorithm for the 
projected area factor derived by Rizzo from Fanger’s data (Rizzo et al. 1991). Only 
50% of that time was used if assuming a geometrical shape, and just 1% was used 
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for the method of direct calculation of view factors as developed by Cannistraro 
from Fanger’s data for view factors (Cannistraro et al. 1992).  

But the example given was a very simple room. There were no inclined surfaces, the 
person was looking directly at a surface and everything was orthogonal. All surfaces 
had points correlated to the centre of the person, so no special calculations were 
needed. 

GRID SIZE 

When using a numerical integration method, the chosen grid size influences both the 
result and the calculation time. In the above example, a grid spacing of 0.01 m was 
used. If instead a grid space of 0.1 m had been used, the calculation time would be 
reduced from 0.64 seconds to 0.02 seconds when calculating the projected area 
factor for the room shown in Figure 29 and calculating the projected area factor by 
the method of Rizzo et al. (Rizzo et al. 1991) . In Table 3, the results of using a 
different grid sizes are shown together with the time used for calculating view 
factors of all six surfaces. 

Gridsize 
in m 

View factors for surfaces Calculation 
time 

in seconds Left Front Right Back Floor Ceiling 

1,000 0,07 0,190 0,172 0,163 0,305 0,091 0,995 
0,500 0,07 0,186 0,174 0,158 0,312 0,091 0,995 

0,100 0,07 0,186 0,174 0,158 0,309 0,091 0,992 

0,050 0,07 0,185 0,174 0,158 0,309 0,091 0,992 

0,010 0,07 0,185 0,174 0,158 0,309 0,091 0,992 

0,005 0,07 0,185 0,174 0,158 0,309 0,091 0,992 

0,001 0,07 0,185 0,174 0,158 0,309 0,091 0,992 
Table 3 Calculated view factors for different grid sizes. All view factors are calculated using 
the method by Rizzo et al. for calculating projected area factor. The right column shows the 
calculation time for the room in Figure 29. [The numbers here are corrected from the verion 
published in Energy and Buildings, where an error had occured]  

For the room in shown in Figure 29 it is seen that calculation time increases rapidly 
when decreasing grid size and that only little difference is found in the calculated 
view factors, when the grid size gets minor than 0.05 m. 

By accepting slightly more uncertainty in the results, it is possible to greatly reduce 
the calculation time, though it is important to bear in mind that the calculation of 
view factors only need to be done only once for a building simulation for a whole 
year. 
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EFFECT OF CALCULATION METHOD ON MEAN RADIANT 
TEMPERATURE AND PMV 

Mean radiant temperature, PMV and PPD are affected by thermal radiation and are 
the measures used for assessing global thermal comfort. The investigation of 
methods for calculation of the projected area factor and proposal of a method for 
view factor calculation had the purpose of improving the accuracy in the calculation 
of mean radiant temperature and PMV, and it is therefore interesting to see the 
influence that the calculation methods has on these values. 

If assuming the same emissivity for all surfaces and that reflections can be 
disregarded, then the mean radiant temperature can be calculated using Equation 29. 

Equation 29 

	 person	→	surface	n ∙ surface	n  

In the room shown in Figure 29 all surfaces are set to have the same temperature of 
22°C, except for the wall in front of the person which is assumed to be a poorly 
insulated window with a surface temperature of 5°C. Air temperature is set to 22°C, 
air velocity to 0.01 m/s, clothing level to 1 clo, activity level to 1 met and relative 
humidity to 50%. The difference in mean radiant temperature (MRT), PMV and 
PPD by using the different methods are calculated and results are shown in Table 4. 

 

 Ray Cannistraro Rizzo Sphere Cube Box 

MRT 19.01°C 19.08°C 19.04°C 19.46°C 19.47°C 18.87°C 
PMV -0.66 -0.65 -0.66 -0.61 -0.60 -0.68 

PPD 14.1 13.9 14.0 12.7 12.7 14.6 
Table 4 Results for mean radiant temperature, PMV and PPD when using different methods 
for calculating view factors 

In this example, integration over Rizzo is the most accurate, but it will vary 
depending on the error of view factors on the different surfaces. Depending on the 
calculation method, the mean radiant temperature is calculated to be as low as 
18.87°C and up to 19.47°C, giving a variation in PMV ranging from -0.68 to -0.60 
and PPD ranging from 14.6% to 12.7%.  
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If instead the wall to the right had been the window, see Figure 29, the two simplest 
methods (sphere and cube) would have been the most accurate. However, the 
objective was to illustrate the effect on the mean radiant temperature felt by the 
person. 

RADIANT ASYMMETRY 

Radiant asymmetry can cause discomfort, both for vertical and horizontal 
asymmetry. The relation between the percentage of people feeling discomfort and 
radiant asymmetry apply for the difference in thermal radiation side-to-side for a 
horizontal or a vertical plate (CEN 2005), though Fanger’s diagrams were actually 
used in especially the first studies (Olesen et al. 1973). 

With the method described earlier in this article it is possible to calculate the radiant 
asymmetry for both plates and a person represented by the algorithm of Rizzo et al 
by keeping track on when the azimuth angle is to the right or left of the person and 
when the altitude angle is above or below the persons centre.  

For the room in Figure 29 the surfaces has one at a time been assumed to be a 
window with a surface temperature of 5°C while the rest where kept at 22°C. The 
results for radiant asymmetry at the point of the person are shown in Table 5 
together with the calculated percentage of dissatisfied. 

   

 

 

 

  Vertical plate Horizontal plate Rizzo 

  ΔTradiant PD ΔTradiant PD ΔTradiant PD 

L
ef

t /
 

R
ig

ht
 Cold wall 1.2°C 0.2%   0.9°C 0.2% 

Cold wall 8.8°C 2.7%   5.6°C 0.9% 

Cold wall 4.2°C 0.6%   2.4°C 0.3% 

U
p 

/ 
D

ow
n Cold wall   -2.3°C 0.0% -2.8°C 0.0% 

Cold floor   14.7°C 37.6% 10.2°C 20.2% 

Cold   -6.1°C 0.1% -2.9°C 0.0% 
Table 5 Radiant asymmetry calculated by the proposed method, using a plate and the 
algorithm for projected area factor by Rizzo et al, and the percentage dissatisfied caused by 
radiant asymmetry. 

Radiant asymmetry calculated for a plate is higher than if calculating using more 
realistic human model. The difference between the methods is highest when the cold 
surface is parallel to the plate. 
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Using the more realistic human model in calculations of mean radiant temperatur 
will result in an underestimation of percentage dissatisfied. 

DISCUSSION 

The described method for calculation of view factors is a robust method and can be 
used to explore several positions and orientations of the person in a room. The 
calculation time is sensitive to the choice of method for determining the projected 
area factor and the grid size. Both also have an effect on the accuracy of the 
calculated view factors. In the example, the calculation time varied by a factor 2 
depending on method, while the calculated mean radiant temperature varied by 
0.6°C. 

The objective of the paper was to develop a method for improving calculation of the 
radiant impact on occupants in building energy simulation tools. As the calculation 
of view factors only has to be performed once for a given room geometry, and not at 
every time step in a building simulation for a whole year, the higher calculation time 
can be justified in order to obtain more accurate results and the method is therefore 
clearly applicable for building energy simulation tools also in rooms with a complex 
geometry.  

View factors involving persons are sensitive to the method for calculating the 
projected area factor of the person, both in calculation time and precision. Though 
even with the most complex model, it is still just a model, not taking into 
consideration the chair and the table where a person is normally seated. And it is 
relevant to consider whether the error when using a simplification of a person as a 
sphere compared with the complex model is actually larger than the difference 
between the complex model and reality, where e.g. the chair blocks a substantial part 
of the radiation to and from the person. 

The calculation of radiant asymmetry using the algorithm by Rizzo, resulted in an 
underestimation of percentage dissatisfied, but the results come closer to how 
surfaces affect a real person. Further comparison between radiation asymmetry 
calculated for plates and the algorithm are suggested e.g. using the results of the 
original studies, in order to describe the relation between percentage dissatisfied and 
the more realistic radiant asymmetry. The current relation simplifies the problem to 
what is easily measured, whereas computers and thermal mannequins make it 
possible to improve both measurements and calculations to better reflect reality. 

CONCLUSION 

A method for calculating view factors between persons and surfaces by using 
Simpson integration was described and compared with ray tracing. Depending on 
the chosen way of calculating the projected area factor of the person, the results got 
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close to the ones found by ray tracing, though with a much lower calculation time 
and a simpler setup for a user. 

The method is applicable for both simple and complex rooms. 

ARTICLE APPENDIX  

This appendix describes the calculation of angles used for determining projected 
area factors in the calculations of view factors and describes the basis in the 
Simpson method for numerical integration together with a quick way to build up the 
matrix used to weigh the results. 

SURFACE TO PERSONS 

For the calculation of the projected area factor, the angles ,  and , in Figure 26, 
must be known for each small area of the surface as well as the distance, r, between 
the person and the small area. 

The normal vector of the surface,	 , is known as well as the position, P, and the 
orientation, , of the person in the room: 

 	   

For each small part of the surface, Δ , we look at, the position of it’s centre is 
known, and the vector,	 , from the person to Δ  is given by: 

 

Then the angle, , between the normal vector of the surface,	 ,  and the vector,	 , is: 

Equation 30 

cos
∙

| | ∙ | |

∙

∙ 	
 

The azimuth angle,	 , is found in the same way, using the person’s orientation, , 
and the vector.	 , though only calculated in the horizontal plane:  
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Equation 31 

cos
∙

| | ∙ | |

∙

	 ∙ 	
 

The altitude, , is the angle between the vector, 	 , and the projection of the 
vector,	 , onto the horizontal plane:  

Equation 32 

cos
∙

| | ∙ 	

∙
0
	 ∙ 	

 

The Simpson method is used to optimise the calculation time when solving Equation 
25. The Simpson method combines the centre method with the trapeze method, 
where the value of a small area is calculated at the centre of the area and as a mean 
of the values in the corners. The method requires the number of small areas to be an 
even number in both directions. 

The principle can be written as: 

, ∙ 	 , ∙ ∙  

, , 2 ,
, , 2 ,
, 2 , 2 2 , 2

⋯
2 , , ,

, ,
, 2

⋮ ⋱ ⋮
, 2 , 2 2 , 2
, , 2 ,
, , 2 ,

⋯
, 2

, ,
2 , , ,

	 

∙

1 4 2
4 16 8
2 8 4

⋯
2 4 1
8 16 4
4 8 2

⋮ ⋱ ⋮
2 8 4
4 16 8
1 4 2

⋯
4 8 2
8 16 4
2 4 1

∙
1
9
∙ ∙  

Where k is the grid size in x-direction, h, is the grid size in the y-direction. 

The matrix weighting the results can be made in 5 steps: 

Step 1: Make a matrix of ones with N rows and M columns corresponding to the 
division of the surface, both N and M has to be even numbers.  
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Step 2: Row 2 → 1  is multiplied by 2 

Step 3: Column 2 → 1  is multiplied by 2 

Step 4: Row 2 → 1  is multiplied by 2 in every 2nd row 

Step 5: Column 2 → 1  is multiplied by 2 in every 2nd column 

1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1

→

1 1 1 1 1 1 1
2 2 2 2 2 2 2
2 2 2 2 2 2 2
2 2 2 2 2 2 2
2 2 2 2 2 2 2
2 2 2 2 2 2 2
1 1 1 1 1 1 1

→

1 2 2 2 2 2 1
2 4 4 4 4 4 2
2 4 4 4 4 4 2
2 4 4 4 4 4 2
2 4 4 4 4 4 2
2 4 4 4 4 4 2
1 2 2 2 2 2 1

 

→

1 2 2 2 2 2 1
4 8 8 8 8 8 4
2 4 4 4 4 4 2
4 8 8 8 8 8 4
2 4 4 4 4 4 2
4 8 8 8 8 8 4
1 2 2 2 2 2 1

→

1 4 2 4 2 4 1
4 16 8 16 8 16 4
2 8 4 8 4 8 2
4 16 8 16 8 16 4
2 8 4 8 4 8 2
4 16 8 16 8 16 4
1 4 2 4 2 4 1

 

 

SURFACE TO SURFACE 

In the calculations, the numerical solution is found by first looking at the small area 
Δ  and calculating the view factor from this small area to object 2. When this has 
been done for all the small areas of object 1, then the total view factor can be found. 

The normal vectors of the surfaces are given as: 

  

For each small are of the surfaces, Δ  and Δ , we look at the position of the 
centres and can thus calculate the vector,	 , between them: 

 

The length of  is:   

The angle, , between the normal vector of surface 1,	 ,  and the vector,	 , is: 
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cos
∙

| | ∙ | |

∙

∙ 	
 

 

The angle, , between the normal vector of surface 2,	 ,  and the vector,	 , is: 

cos
∙

| | ∙ | |

∙

∙ 	
 

To optimise the calculation time when solving Equation 28 the Simpson method is 
used - twice.  
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The last article researches the handling of uncertainties and variation in the 
calculations and in the presentation of the results.
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ABSTRACT 

An application was developed for long-term evaluation of global and local thermal 
comfort based on building energy simulation tools. The application handles the 
whole room and facilitates assessment of uncertainty. Methods prescribed by ISO 
7730 are used for calculating the predicted mean vote in a grid together with 
percentage dissatisfied by draught, radiant asymmetry and floor temperature, all 
based on research by Fanger. 

This paper describes how the data from building simulations are processed to make 
evaluations of local and global thermal comfort. Air velocities were found by means 
of flow elements, clothing level was calculated by a correlation with operative 
temperature and thermal radiant impacts were found from calculations of view 
factors at all nodes in a grid and for different orientations. 

Uncertainty and variations of input parameters and their effect on results are handled 
by making a number of calculations for each point while varying the input.  

The results obtained by using the thermal comfort application are plots showing a 
summation of the obtained categories and a number of plots for deriving when, 
where and why thermal comfort in a room is categorised A, B, C or D respectively 
and how variations and uncertainty can affect the results. 
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INTRODUCTION 

The objective of this study was to describe a method for the long-term evaluation of 
global and local thermal comfort based on the international standard for thermal 
environment ISO 7730 (CEN 2005) and building energy simulations. The method is 
applicable for optimisation and for classification of the thermal indoor environment 
of a building. 

The most widely used measures for thermal comfort were derived by P.O. Fanger 
and consist of a comfort measure for the body as a whole, supplemented with 
measures for discomfort caused by draught or parts of the body being exposed to 
temperature differences (Fanger 1970, 1981; Fanger et al. 1985, 1988; Olesen et al. 
1973). The first ISO 7730 standard on thermal comfort published in 1984 was based 
on Fanger’s research. The standard describes how global thermal comfort can be 
assessed by calculating the predicted mean vote (PMV) or predicted percentage 
dissatisfied (PPD); and local thermal discomfort by calculating the draught rate 
(DR) and percentage dissatisfied (PD) caused by thermal radiant asymmetry, floor 
temperature and vertical air temperature gradient. 

In 2006, the standard was revised for the second time and the categories A, B and C 
were added to assess thermal comfort across the measures for global thermal 
comfort and local thermal discomfort. Methods for long-term evaluation were also 
added in the revision, though the long-term methods apply only to global thermal 
comfort and neither for local discomfort nor the summation of global and local by 
the new categories. 

For the last two decades, building energy simulation tools have been used for most 
buildings in the design or renovation phase to calculate and optimise their expected 
energy consumption.  Thermal comfort is closely related to the energy consumption 
of buildings and it is therefore ideal to base an application for assessing long-term 
thermal comfort on building energy simulation tools. The consequences of energy 
optimisation on thermal comfort can thus quickly be assessed and any problems can 
be solved early in the design process. 

This paper presents an application for long-term evaluation of global and local 
thermal comfort by applying ISO 7730 and describes how results from a building 
energy simulation tool are processed in the calculations of thermal comfort. Some of 
the parameters, for calculating thermal comfort, vary in the room and others vary 
with the orientation of the person. Some of the parameters are more uncertain than 
others. The application deals with all this and gives a precise and detailed picture of 
the thermal comfort in a room. 

The application takes the evaluation a step further than ISO 7730 by including a 
long-term evaluation of the whole room for both global thermal comfort and local 
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thermal discomfort, and moreover it assesses the effects of uncertainty and 
variations on the results. 

AN APPLICATION FOR LONG-TERM THERMAL COMFORT 
SIMULATION 

A way to improve thermal comfort in buildings is to improve the simulation of 
thermal comfort. Better simulations make it possible to optimise buildings for 
thermal comfort, to predict and deal with problems before they occur in real life. 

The ideal application for simulation of thermal comfort would calculate PMV, PPD, 
DR and PD caused by floor temperature, vertical air temperature gradient and 
radiant asymmetry, as described in ISO 7730. The ideal application would make it 
possible to both get an overview and to go deeper into the results. 

The ideal application should summarise the results for easy comparison of different 
building designs and the application should deal with and visualise the uncertainty 
of the results caused by uncertainties and variations in the input.  

For optimisation of a building design, the application should make it possible to find 
out: what causes problems with thermal comfort, when problems with thermal 
comfort occur and where in the room is there a risk of poor thermal comfort. 

Last but not least, the application should have a calculation time comparable to 
building energy simulation tools, which will make it possible to run a number of 
simulations in an optimisation process of a building. 

ISO 7730 

ISO 7730 describes how thermal comfort can be assessed for a building by using the 
equations derived by P. O. Fanger for both global thermal comfort and local thermal 
discomfort. 

Global thermal comfort is calculated for the body as a whole and is based on the 
body’s heat balance: heat production vs. heat loss to the surroundings. The relation 
between people’s thermal sensation and the heat balance is found through tests in a 
climate chamber and is expressed by PMV and PPD. 

Local thermal discomfort can be caused by draught, floor temperature and 
temperature differences. Local thermal discomfort is expressed by the percentage of 
people being bothered or dissatisfied. Draught dissatisfaction is expressed by the 
draught rate, DR, while temperature dependent causes are expressed by percentage 
dissatisfied, PD. 
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Calculating both global and local thermal comfort gives five different measures in 
each point. The number of dissatisfied given by the five measures should not be 
summed, as the same persons are often sensitive to more impacts. Instead, the total 
evaluation is done by categorising the indoor climate through criteria for the five 
measures as shown in Table 6. 

Table 6 

 

ISO 7730 prescribes the categories A, B and C. The authors supplemented these 
categories with a category D to cover situations outside the ranges of categories A, 
B and C. In other norms and standards, similar categories are used for categorising 
the indoor environment.  EN 15251 (CEN 2007) covers the indoor environment 
more broadly by taking lighting and acoustics into consideration. EN 15251 names 
the categories I, II, III and IV, where category IV covers cases outside the limits of 
category III, as suggested by the authors for category D. EN 15251 has the same 
limits for global thermal comfort as ISO 7730, but the norm does not cover local 
thermal discomfort, though it states that local thermal discomfort should be taken 
into consideration referring to ISO 7730. 

ISO 7730 gives five methods for long-term evaluation of the thermal comfort. 
Method A calculates the number or percentage of hours that the criteria for PMV or 
operative temperature are not met. Methods B and C weight the hours outside the 
chosen criteria by a weighting factor which is a function of how many degrees or 
PPD’s, the range has been exceeded. Method D is the average of the PPD’s during 
the occupied hours and method E sums the PPD’s during the occupied hours.  

Compared with the features described in the previous section for a thermal comfort 
application, the standard ISO 7730 prescribes methods and levels for assessing both 
global thermal comfort and local thermal discomfort, but it lacks methods for long-
term evaluation of local thermal discomfort, distribution in the room and assessment 
of uncertainties and variation effect on the results. 
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THE THERMAL COMFORT APPLICATION 

The calculation methods and functionalities of the developed application for thermal 
comfort evaluation are described by means of an example. 

A building energy simulation was performed in BSim (Wittchen et al. 2013) for an 
office situated in Denmark. The office was placed at an intermediate floor and was 
ventilated by natural ventilation through two highly placed windows in the south 
wall. The east wall was fully glassed and would generate down draught when cold. 
A sketch of the room is shown in Figure 32. 

 

Figure 32 The room as simulated in BSim. Inside room dimensions: height 3 m, length 8 m, 
width 5 m. There were two openable windows, each with a controlled opening area at the top 
of up to 0.33 m2. The east wall was fully glassed. 

From the building energy simulation the following hourly results were used in the 
thermal comfort application: 

 Inside and outside air temperatures 
 Surface temperatures 
 Inlet air velocities through the window openings 
 Opening area of the windows 
 Relative humidity 

Besides these inputs, the application needs information on room geometry, including 
placement of the inlet openings. 

The application calculates thermal comfort in a horizontal grid for a seated or a 
standing person. In this example, a grid size of 0.5 m was used and a seated person 
was assumed. The grid had nodes in the centre line of both openable windows. 
Calculations were made for eight different orientations of the person, to be able to 
assess how thermal comfort varies with the orientation. 
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All input parameters are subject to uncertainties or variations and in order to 
consider this when calculating thermal comfort, a number of calculations were 
performed with varying input parameters. For each time step a variation sample was 
generated, containing the chosen number of variations for each parameter. The same 
sample set was used for the whole room at a given time step. To cover the variation 
space optimally, the statistical method Latin hyper-cube was used for sampling sets 
of input parameters. The principle of Latin hyper-cube is explained in Figure 33. A 
sensitivity analysis on the number of variations was performed for the example and 
is presented later in the article. 

 

Figure 33 The principle of the Latin hyper-cube in a fictive case of two parameters and five 
samples. The samples are found as values between 0 and 1. For each parameter the sample 
space is divided into five intervals (the number of samples) and one random value is then 
picked randomly for each of the intervals. The five sample pairs are taken in a way that each 
interval is chosen only once for each parameter. The sample values are converted to a 
parameter value based on the distribution for each parameter, here it is a normal distribution 
with mean = 22.5, standard deviation = 1.5, minimum value = 21 and maximum value = 24. 

CALCULATION OF PMV AND PPD 

The global thermal comfort measures PMV and PPD are calculated from air 
temperature, air velocity, mean radiant temperature and relative humidity at the 
person’s position as well as the person’s clothing level and activity level. 

In the following, it is explained how these parameters are found, treated and used in 
the application for thermal comfort. 

Air temperature 

Air temperature has a great influence on the thermal comfort in a room and it is 
therefore an important parameter in the application. 
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The inside air temperature is a core parameter in building energy simulations and 
full mixture of the air in the room is assumed in the simulations. In reality, air 
temperature can vary both horizontally and vertically depending on ventilation 
system, size and geometry of the room. 

In the example, the air temperature was varied to depict the horizontal variation that 
might occur in the room. The following parameters were used for the variation of air 
temperature: 

Distribution:  
Standard deviation, σ: 
Mean, μ:  
Min:  
Max: 

Normal 
1°C 
Value from building simulation  
μ  – 1.5°C 
μ + 1.5°C 

Air velocity 

Air velocity increases the heat transfer by convection and thereby influences thermal 
comfort of a person. 

Air velocities are calculated by flow elements from the values of: velocities in inlet 
openings, opening area, surface temperatures, inside and outside air temperatures. A 
tool was developed by the authors for calculating air velocities on a long-term basis 
using flow elements(Vorre et al. 2014). Flow elements have the advantage compared 
with CFD that the calculation in a given point is independent of a grid and this 
makes it possible to calculate velocities only in points of interest, which lowers 
calculation time and makes long term simulations possible.  

In the example, the chosen grid size for thermal comfort simulation was used in 
three dimension and air velocities were calculated in each node.  

Each flow element was handled individually and if more flow elements affected the 
node, the highest of the calculated velocities in the node was used. The number of 
flow elements colliding in a point was used as a measure of the uncertainty of the 
results. 

In each column from floor to the top of the occupied zone, the mean and the 
maximum velocities were found together with the highest number of colliding flow 
elements. The principle for maximum velocity is shown in Figure 34. As input for 
the calculations of air velocities were used the results from the building simulation 
and variation was applied afterwards. 
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Figure 34 Air velocities are calculated in the nodes of a grid structure and the highest value 
in each column is found. 

The calculated air velocities have a high uncertainty as several parameters can affect 
the flows in a room e.g. curtains, furniture or colliding airflows. To depict the 
varying uncertainty due to more flow elements in the same point, the number of 
colliding flow elements was used to set the standard deviation of the normal 
distribution. 

The following parameters were used for the variation of air velocities, where “x” is 
the maximum number of colliding flows in the column: 

Distribution:  
Standard deviation, σ: 
Mean, μ:  
Min:  
Max: 

Normal 
0.01 · x2 + 0.01 (x = 1→	0.02,  x = 2 →	0.05, x = 3 →	0.1)   
Mean velocity for the column  
0 m/s 
Maximum velocity for the column 

Mean radiant temperature 

Mean radiant temperature is defined as that uniform temperature of a black 
enclosure which would result in the same heat loss by radiation from a person as the 
actual enclosure being studied. 

Mean radiant temperature will vary in a room, both with the position and with the 
orientation of the person. Emissivity and reflections have been disregarded and 
mean radiant temperature calculated as: 
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Equation 33 

∙ →	  

Where  is the mean radiant temperature in kelvin,  is the temperature of 
surface i in kelvin and →	  is the view factor between the person and surface 
i.View factors between the surfaces in the room and a person are calculated in each 
node in the grid for eight orientations of the person. View factors are calculated by 
numerical integration over each surface, where a person’s projected area factor is 
modelled by the algorithm developed by Rizzo et al (Rizzo et al. 1991). The method 
is described in detail in an earlier work by the authors (Vorre, Jensen, and Le Dréau 
2015). As view factors do not change over time, they only need to be calculated 
once for a room-geometry and not at every time step as the rest of the calculations. 

Surface temperatures are calculated by building simulations and are considered 
relatively certain, though glass temperatures can be a problem depending on 
calculation methods of the simulation tools. 

Variations in mean radiant temperature are simulated by varying surface 
temperatures to take variations over the surface into consideration. 

Distribution:  
Standard deviation, σ: 
Mean, μ:  
Min:  
Max: 

Normal 
0.3°C   
Surface temperatures found by building simulation  
μ  – 1°C 
μ  + 1°C 

Relative humidity 

Relative humidity only influences thermal comfort very little when looking at 
conditions likely to occur in offices, schools etc.  

The humidity of the air in a room is calculated by building energy simulation tools 
and the results are considered as having high certainty. Full mixture of the air is 
assumed in the simulations, though in reality some variation can occur e.g. due to 
plumes of ventilation air. 

In the example the relative humidity was varied to depict the horizontal variation 
that could occur in the room. The following parameters were used for the variation 
of relative humidity: 

Distribution:  
Standard deviation, σ: 

Normal 
5% 
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Mean, μ:  
Min:  
Max: 

Value from building simulation  
20% 
70% 

Clothing level 

Clothing is the heat insulation between a person’s skin and the surroundings, and it 

has a high impact on thermal comfort. Clothing insulation is measured in in 
m2∙K

W
 or 

clo, where 1 clo equals 0.165 in 
m2∙K

W
.  

In the experiments that P.O. Fanger used for developing the equations for PMV and 
PPD, the test persons have very strictly measured clothing insulation(Fanger 1970). 
From the experiments it was found that under the same thermal conditions and with 
the same clothing insulation the number of dissatisfied will not get below 5% even 
at optimum conditions, because people have different thermal preferences. If people 
had been asked to adjust their clothing in order to obtain thermal comfort, the 
number of dissatisfied would presumably be lower and maybe it would be possible 
to satisfy all. 

Knowledge of clothing insulation in real life is needed for simulation of thermal 
comfort on a long-term basis. The ASHRAE RP-884 database(de Dear and Brager 
1998) was used by the authors to find a relation between clothing insulation in real 
buildings and a thermal parameter that is known from building energy simulations 
(Vorre and Jensen 2014). The current operative temperature, top, was found to be the 
best parameter and the relations between operative temperature and mean clothing 
insulation for buildings with and without cooling are given in Equation 34 and 
Equation 35. 

With cooling: 

Equation 34 

0.0552 ∙ 2.486 for 25°C
0.65 for 25°C 

Without cooling:  

Equation 35 

0.0858 ∙ 2.829 for 25°C
0.69 for 25°C 

For both building types, it was found that a minimum clothing level is reached at 
25°C. 



USING BUILDING SIMULATION TO EVALUATE GLOBAL AND LOCAL THERMAL COMFORT ACCORDING TO ISO 
7730.  

111 

The data in the database RP-884 are from real working environments where people 
had some degree of freedom in their choice of clothing. From the above equations it 
is seen that people vary their clothing according to the operative temperature, but 
another interesting result from the study was, that even though people vary their 
clothing according to operative temperature and - on average - also according to 
their thermal preference, no relation was found between clothing level and thermal 
comfort vote when looking at a given operative temperature. Actually, the same 
standard deviation in thermal comfort votes was found as in Fanger’s experiments in 
climate chambers with a strict dress code. This is probably because there are so 
many other reasons for the choice of clothing than just thermal comfort, e.g. fashion. 
It is concluded that the opportunity to adapt clothing according to thermal preference 
is being used by some, but an equal number of people choose clothing that does not 
get them closer to thermal comfort.  

As variation in clothing at a given operative temperature did not affect the thermal 
comfort vote, it was chosen not to make variations in clothing in the application, 
because clothing varies when variations are done for the operative temperature. 

In the example, clothing level was calculated using Equation 35. 

Activity level 

Activity level equals the heat production of the body minus effective mechanical 
work (W). The activity level has a high impact on thermal comfort. The activity 
level or metabolic rate (M) is measured in either W/m2 or met where 1 met equals 58 
W/m2.  

The effective mechanical work by a person (W) can be regarded as 0 for typical 
office work, sedentary tasks or low activity tasks. 

ISO 7730 provides a table for estimation of metabolic rate depending on activity. 
For office work, it ranges between 1.0 met (seated, relaxed) and 1.2 met (sedentary 
activity e.g. office and school). 

The uncertainty on metabolic rate is very high, both because it is difficult to measure 
and estimate for a given situation, but also because the metabolic rate for the same 
activity varies between people. Uncertainty on metabolic rate is typically around 
50% but can be as high as 100% (Parsons and Hamley 1989). A difference of just 
15% of metabolic rate can easily lead to a difference of 0.3 of the calculated PMV 
(Havenith et al. 2002). 

In the example, the activity level was varied with the following distribution and 
parameters: 
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Distribution:  
Standard deviation, σ: 
Mean, μ:  
Min:  
Max: 

Normal 
0.05 
1.2 
1.0  
1.4  

DRAUGHT RATE 

Draught is probably what causes most complaints about the indoor environment. 
Draught rate is a measure of the percentage dissatisfied by draught and is calculated 
from the air velocity, turbulence intensity and air temperature. 

Air velocity 

Air velocity has a high impact on the sensation of draught. 

The air velocity for calculation of draught risk is found in the same way as for PMV. 
The following parameters were used for the variation of air velocities, where “x” is 
the maximum number of colliding flows in the column: 

Distribution:  
Standard deviation, σ: 
Mean: 
Min:  
Max: 

Normal 
0.01 · x2 + 0.01 (x = 1→	0.02,  x = 2 →	0.05, x = 3 →	0.1)   
Maximum velocity for the column  
0 m/s 
2 · μ  

 

When doing the calculations, the same random value is used for calculating air 
velocities for both global thermal comfort and draught risk, only the mean values, 
standard deviation and min/max values are changed. This ensures correlation 
between calculated values for global thermal comfort and draught risk. 

Turbulence intensity 

Turbulence intensity affects the sensation of draught.  

A turbulence intensity of 40% was used in the example. 

Air temperature 

Draught rate is affected by the air temperature. 
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The application uses the air temperature in the room for the calculations of draught 
rate and adopts the same variations. 

VERTICAL AIR TEMPERATURE DIFFERENCE 

The thermal comfort application does not cover percentage dissatisfied because of 
vertical air temperature difference. The foundation of building energy simulation 
tools is full mixture of the air and consequently it is impossible to simulate the 
vertical air temperature gradient.  

FLOOR TEMPERATURE 

Local thermal discomfort can be caused by both a too cold or too warm floor 
temperature. The calculation of dissatisfied due to floor temperature is only 
dependent on the floor temperature. 

The floor temperature found by the variations of surface temperatures as explained 
in the section on mean radiant temperatures is used in the example. 

RADIANT ASYMMETRY 

Asymmetry in thermal radiation can cause thermal discomfort. Radiant asymmetry 
is defined as the difference in mean radiant temperature between two sides of small 
plate. For a vertical asymmetry, the highest discomfort occurs between left - right 
side, whereas front – back causes less discomfort. 

Radiant asymmetry is found by calculating mean radiant temperature for each side 
of a small plate placed vertically or horizontally in the centre of the person. The 
same numerical method as used for mean radiant temperature of a person is used for 
calculation of view factors to each side of a small vertical and a small horizontal 
plate. A more detailed description of the calculations is given in an earlier article by 
the authors (Vorre et al. 2015), where radiant asymmetries calculated for the small 
plates are compared with calculations using the same model of a person as used for 
calculating mean radiant temperature. Radiant asymmetry calculated with a model of 
a person gives a better picture of the temperatures felt by the person than the plates, 
but it would require a new correlation with percentage dissatisfied, PD. 

In the example, varying surface temperatures were used for calculating radiant 
asymmetry and the calculations were performed in all nodes in the room and for the 
eight orientations of the person. 
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OUTPUT AND RESULTS FROM THE THERMAL COMFORT 
APPLICATION 

For each hour of the year, four measures of thermal comfort are calculated: PPD, 
DR, PD caused by floor temperature and PD caused by radiant asymmetry. For each 
measure, the resulting category, A, B, C or D, is found together with the aggregate 
category. The calculations are performed in a grid and for a number of orientations. 
Furthermore, all the calculations are performed a number of times with variations on 
input parameters to take uncertainty into consideration. The result is a probability 
distribution between the four categories in Table 6 for each node, each orientation 
and each hour. An example of distribution is given in Table 7. 

Table 7 

A B C D

13% 19% 68% 0%

 
To get an overview, the mean values of orientation, the room or time were 
calculated depending on the focus. The mean values of all occupied hours of the 
whole year, the whole room and all orientations were used for a sensitivity analysis 
for the number of variations performed for the room in the example. 

Whole year calculations were made with 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 
500 and 1000 variations in each point and for each orientation. The distributions 
between categories for each point and orientation were compared with the 
distributions found using 1000 variations. The results of the comparisons are shown 
in Figure 35 as a mean of the absolute differences for each calculation and as a mean 
of the difference in per cent for each calculation.  
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Figure 35 Sensitivity analysis of the number of variations made in the calculations. To the 
left, the absolute difference is shown and to the right, the difference is shown in percentage. 
All numbers are compared with results by 1000 variations. 

The greatest effect of adding more variations is seen at the low number of variations, 
but as the number of variations affects the calculation time linearly, it is worth 
considering the gain in accuracy by using e.g. 200 instead of 100 variations. 

The results presented in this paper are found from the calculations using 1000 
variations. 

OVERVIEW 

To give an overview of the results, the distribution between categories was averaged 
for each hour. Position in the room and orientation of the person is thereby regarded 
as variations. For each hour, the category for respectively 5%, 25%, 50%, 75% and 
95% quantiles of the calculations is found. In Table 8 the categories for the five 
quantiles are shown if assuming the distribution in Table 7. 

Table 8 

5% 25% 50% 75% 95%

A B C  C C

 

By counting the number of hours in each quantile for each of the four categories, a 
summary for the whole year can be made as a bar plot for all hours or all occupied 
hours as seen for the example in Figure 36.  
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Figure 36 Percentage of hours in each category. The top bar shows the category in the best 
5% of the calculations in each hour; the next bar shows the best 25%. The middle bar shows 
the 50% quantile or the median and represents approximately the mean of the calculations. 
The bottom bars shows the 75% and 95% quantiles in each hour.  

Figure 36 gives an overview of the percentage of hours in each category and how 
much the results are affected by variations in the input. If the five bars are alike, the 
thermal comfort is robust to the variations; if they differ, the thermal comfort is 
sensitive to the variations. 

The 50% quantile, or the median, approximately represents the mean of the results. 
For the example 43% of the occupied hours were in category A for the 50% 
quantile. Variations in inputs could cause the percentage to rise to more than 60% or 
fall to 10% or even 0%.  Categories A and B were most sensitive to the variations. 

FLOOR PLAN WITH PLOT OF THERMAL COMFORT 

The distribution of thermal comfort in the room is shown as a floor plan with plot of 
the categories. The probability distributions for each category are averaged over 
time and orientation for each node in the room.  

In Figure 37, categories are plotted for the whole year in the occupied hours. The big 
plot shows the median or 50% quantile of the results and smaller plots show 
quantiles of the results to assess the uncertainty. 
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Figure 37 Floor plan of the room with plot of thermal comfort category for the median of the 
calculations for occupied hours of the whole year. To the right are plots for 5%, 25%, 75% 
and 95% quantiles. 

The example showed that the entire room has thermal comfort of category B for the 
median of the results of all occupied hours. The small plots of quantiles show that 
the variations in input can cause thermal comfort to improve to category A or to 
drop to category C or even D in the entire room. 

Time plot 

The variation of thermal comfort over time is illustrated by calculating the hourly 
distribution between categories for shorter periods, months / weeks / days, using the 
same principles as for the bars in Figure 36. The results are shown as curves for the 
median of results, 25% and 75% quantiles. Figure 38 shows a plot of monthly values 
and Figure 39 shows a plot of weekly values. 
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Figure 38 Graphs showing percentage of occupied hours in each category. Dashed lines 
represent 25% and 75% quantiles. Calculations are made for each month.  

Figure 38 shows that thermal comfort is best in the spring and autumn months, and 
that there are problems in the summer months, where most hours are in either 
category C or D.  The dashed lines representing 25% and 75% quantiles show that 
the uncertainty of categories are highest in winter, where category A and B are both 
able to go from nearly 0% to 100% of the occupied hours. 

  

Figure 39 Graphs showing percentage of occupied hours in each category. Dashed lines 
represent 25% and 75% quantiles. Calculations are made for each week. 

Figure 39 expresses the fluctuations between the weeks and gives a more detailed 
view than Figure 38. The room in the example mainly perceives poor thermal 
comfort in summer, but there is also a week in the late spring, when most hours are 
in catorgory C. 
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SEPARATION OF THERMAL COMFORT MEASURES 

The categories shown in the above figures are found by taking the worst category of 
PPD, DR, PD caused by floor temperature and PD caused by radiant asymmetry in 
each calculation. 

To be able to optimise a building design, it is vital to know the cause of a problem.  
Therefore it is possible to structure the results according to the four measures as 
shown in Figure 40. 

 

Figure 40 Distribution of hours in each category divided into the four criteria used in the 
tool. 

It is clear from Figure 40 that in the example radiant asymmetry do not create 
problems and that the floor temperature is the main cause of comfort being in 
categories C and D. The uncertainty in inputs has the greatest effect on draught rate 
and PPD, while only little effect on the category caused by floor temperature. Direct 
radiation from the sun is not taken into consideration in the application at the 
moment, which is probably the cause of the good results for radiant asymmetry. 

VARIATION IN THE ROOM OVER TIME 

To get an overview of where in the room and when the different categories are 
achieved, plots of the floor can be made for each month, week, day or even each 
hour. Plots for every month are shown in Figure 41. 
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Figure 41 Plots of the floor plan with thermal comfort categories for each month. 

From Figure 41 it is seen that from May to September the whole room is in category 
C, though D in July, while problems occur closest to the glassed façade during the 
remaining months. 

VARIATIONS OF THE FOUR MEASURES OVER TIME  

The four criteria for thermal comfort all vary during the year and to get an overview 
of when the different criteria cause problems, curves for percentage of time can be 
drawn individually. In Figure 42, the percentages of hours are calculated for each 
month. 
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Figure 42 Curves showing the percentage of hours in each category. Dashed lines refer to 
25% and 75% quantiles.  

Figure 42 shows that PPD is poor in the summer, but also somewhat in winter. Floor 
temperature is only a problem in the warmer months and draught only occurres in 
winter. Radiant asymmetry is not a problem at all. 

ORIENTATION 

In the example, the calculations were made for eight different orientations of the 
person and the differences between them are shown in Figure 43.  
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Figure 43 Plots of the floor plan for the eight orientations of the person. To the left is the total 
categories for week 8 and to the right the categories for PPD in week 26 

The plots show that thermal comfort varied with the orientation of the person, 
though the difference is small. For most weeks, the difference is close to non-
existing. 

The application makes it possible to zoom in on the results in all kinds of ways by 
combining the shown plots. All plots can be made for the resulting category or each 
measure individually, for a specific orientation or all together, for the whole year, 
each month or less. For all hours or only occupied hours, etc. 

DISCUSSION 

The application is based on the equations developed by Fanger. Other measures of 
the thermal environment are adaptive thermal comfort and productivity. 
Implementation of these could very well be the next step in the development of the 
application. The focus on thermal comfort through Fanger’s perspective was chosen 
because it gives the most information that can be used in an optimisation process of 
a building, because the measures make it possible to see potential causes of poor 
thermal comfort. 

Uncertainty is dealt with by making a number of variations in the input and showing 
the results including quantiles of results. This gives higher calculation times and 
might confuse an end user of a building; but it is considered very important that 
uncertainties can be communicated to end users because they need to be aware that 
these kinds of calculations are subject to uncertainties. The authors have 
endeavoured to optimise the presentation of the results so that they are 
comprehensible also to nontechnical persons. 

The room temperature is used in the application for draught risk assessment, and the 
next step in the development could be to calculate the local temperature by means of 
the flow elements. This would give an even better estimation of the draught risk.  
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A shortcoming of the application is that it does not consider direct radiation from the 
sun. To do so, a method is needed to calculate how big a part of a person would be 
hit by the radiation at a specific point in the room.  

CONCLUSION 

The standard for thermal comfort was first issued in 1984 but the application 
presented in this article is the first tool to actually make it possible to simulate long-
term thermal comfort for a room. This application gives an overview for comparison 
of different designs and makes it possible to structure the results in order to optimise 
a building.
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CONCLUSION 

The phd-study has demonstrated that it is possible to make fast calculations for 
thermal comfort evaluation. The possibilities for simulating parameters affecting 
thermal comfort were researched and three of them were chosen for further 
development of calculation and simulation methods. 

For clothing level, a correlation was found between the indoor temperature and 
between whether the building has mechanical cooling or not. And it was found that 
even though people are free to vary their clothing, it does not mean that they obtain 
better thermal comfort, because clothing is so much more than thermal insulation. 

Flow elements were found to be ideal for calculating air velocities, because the 
calculation time is low and each calculation is independent of its neightbours, 
making each calculation grid independent. A method was described for handling 
more than one flow element in a point and for overall presentation of results. The 
calculation method is fast and thereby applicable for calculations of several time 
time steps e.g. all hours of a month or a year. 

Thermal radiation to persons was investigated and a method for calculating view 
factors applicable to even complex room geometries was described. The method can 
also be used for calculating radiant asymmetry and opens up for calculating radiant 
asymmetry using the human body instead of a plate as a measure. 

The developed methodologies have been implemented in a working prototype for 
evaluation of thermal comfort on a long-term basis using output from building 
energy simulation tools for the calculations. The developed application deals with 
uncertainties and illustrates the consequences on the results, making it easy to 
communicate to non-technical people that such simulations are never accurate 
predictions of the future. 

It is my hope that the methods will be implemented in one or more building energy 
simulation tools, and thereby lead to buildings with better thermal comfort. 
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Abstract

Thermal comfort in a building is inevitably connected with the building’s energy

consumption. An optimisation of either one will affect the other and a combined

optimisation process is, therefore, the ideal way to ensure that expectations to both the

energy performance and the thermal comfort of the occupants are met. This literature

review investigates the possibilities of basing thermal comfort simulations on building

energy simulation tools. Firstly methods for the evaluation of thermal comfort are explored,

secondly the capabilities of thermal comfort simulation in current building simulation tools

are investigated and thirdly the possibilities of calculating the needed input parameters for

thermal comfort calculations are explored. For design optimisation, Fanger’s local thermal

discomfort measures give the most useful information, while for compliance check of a

design both Fanger’s global thermal comfort and de Dear’s adaptive thermal comfort are

very adequate. None of the investigated building simulation tools can simulate local thermal

discomfort, some can partly simulate global thermal comfort and several can simulate



2

adaptive thermal comfort. Finally it appears promising to develop calculation methods based

on existing research for the needed input parameters in order to simulate local thermal

discomfort and global thermal comfort.

Keywords

Mean radiant temperature, air velocity, PMV, long term thermal comfort model, clothing,

uncertainty

Introduction

Wishes for better comfort drove man to develop buildings. The basic needs were fulfilled

centuries ago, and buildings today are much more than just shelters against the outdoor

environment. Yet occupants’ satisfaction with the thermal environment can still not be taken

for granted. Brand new buildings experience problems with draught, warm / cold thermal

radiation, overheating in summer and low temperatures in winter.

One way to ensure indoor thermal comfort is through large plants for heating and cooling,

the way it has been done for decades, but also a way which has led to massive energy

consumption.

Another way is to improve simulation of thermal comfort in order to foresee the problems,

and then optimise the building design for high thermal comfort and low energy consumption.

Building energy simulation tools are already used in the optimisation of the building’s energy

efficiency. By expanding the tools’ capabilities in the simulation of thermal comfort, the

energy efficiency and thermal comfort can be optimised in parallel. Through an overview of

the thermal comfort in the building over a longer period, is it possible to point out areas and
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periods of interest for further analysis in order to optimise the building design for better

thermal comfort.

This paper explores the possibilities of expanding building energy simulation tools for better

thermal comfort simulations. The main section headings of the paper are listed below.

Background

Measures of thermal comfort 

Building energy simulation tools and thermal comfort 

Radiant impact 

Air velocities 

Personal factors: Clothing and activity level 

Dealing with uncertainties 

Conclusion

First the background for the need of improved simulations of thermal comfort is presented,

followed by assessment of methods for evaluation of thermal comfort and the capabilities of

thermal comfort simulation in existing building simulation tools. Then calculation methods

for the needed input parameters are explored together with a short overview of possibilities

for handling input parameters’ uncertainties in the simulations. Finally a conclusion is made

on the possibilities of expanding building energy simulations with better thermal comfort

simulations.

Background

The need for better thermal comfort simulations is founded on at least three main causes:

Demands to energy efficiency 
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Rapid development in building technologies  

Occupants’ rising expectations to thermal comfort. 

Since the energy crisis in the 1970s, northern European countries have focused on energy

optimisation of buildings. This has led to passive houses, zero energy buildings and to

legislation on the energy efficiency and insulation requirements for buildings.

Researchers from Aalborg University monitored the indoor environment in eight new,

passive houses in Denmark after the occupants moved into their new homes1. The

researchers found that some of the houses both overheated in summer and had insufficient

heating capacity in winter. Something in the design had simply failed.

Earlier experience was enough

Some decades ago, experience was the key word. Buildings in Denmark were made of brick

with windows covering a minor part of the façade and inside rooms were relatively small

compared with today’s standard. The exterior walls and windows were poorly insulated and

created draught and radiant asymmetry in the room. The same scenario of thermal comfort

issues applied for most rooms and therefor the same solutions could be applied.

Nowadays new building techniques make it possible to build large glassed façades, with

rooms stretching over the entire floor plan and with atriums in the middle. Air changes can

be handled by automatically controlled windows, where openings are adjusted according to

inside and outside climate. Thermal comfort can vary greatly in a room, over time and

between buildings, making it harder to predict thermal comfort based solely on experience

and thereby harder to foresee consequences of building energy optimisation on experienced

thermal comfort.
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Building energy simulations

In the design process of buildings, simulations are performed in building energy simulation

tools like EnergyPlus2or ESP r3 to optimise a building energy wise. Most tools utilise internal

air temperature as control parameter for their heating and cooling systems, which to some

extent is also how systems are controlled in real life, but some are also able to control

according to operative temperature or predicted mean vote (PMV). The calculations of these

parameters in the programs are described in more detail later in this article.

To ensure acceptable thermal comfort, while optimising energy consumption, boundaries

are set for internal temperatures; for example the maximum number of hours above or

below certain temperature limits. In a design process, the simulated number of hours when

the operative temperature is outside these limits are counted and used for assessing

thermal comfort, even though more parameters affect the thermal comfort of the occupants,

e.g. air movements, clothing level and the weather outside.

Thermal comfort and energy consumption

Thermal comfort is essential for the energy optimisation of a building, because poor thermal

comfort can increase energy consumption. Some occupants will simply put on a sweater

when it is cold, or wear short sleeves when it is warm. Others choose to adjust the settings

of heating and cooling systems. Interventions could also be to block inlet openings or put up

small air conditioning devices. All these interventions are caused by dissatisfactory thermal

environment and they can affect the energy consumption of a building.

A way to improve thermal comfort in buildings is through better measures for thermal

comfort in building energy simulation tools, which would also lead to more robust building
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energy simulations. Furthermore early knowledge on thermal comfort problems makes it

both easier and cheaper to change an inopportune building design.

The objective of this paper is a) to find a measure of thermal comfort that is suitable for

optimisations in parallel with building energy optimisations, b) to investigate features of

existing building energy simulation tools for thermal comfort evaluation and c) to explore

the possibilities for simulating the input parameters needed for calculating thermal comfort

based on building energy simulation tools.

Measures of thermal comfort

To predict how occupants will perceive thermal comfort, researchers have described the

connection between a number of objective parameters and occupant’s satisfaction with the

thermal environment.

In Europe the indoor environment standard EN 15 2514 is used for assessing thermal comfort

and in the US ASHRAE 555 is used. Both describe how thermal comfort can be assessed

either using the equations for global thermal comfort and local thermal discomfort or the

equation for adaptive thermal comfort. A third method relates thermal environment to

productivity of the occupants, which is interesting because the price of obtaining a desired

thermal environment can then be compared with the earnings through workers’ higher

performance.

In the next sections, the three methods for evaluating thermal comfort are explored in

relation to optimisation through simulation of thermal comfort based on building energy

simulations.
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Global thermal comfort and local thermal discomfort

The concepts of global thermal comfort and local thermal discomfort are both based on

research by P.O. Fanger. The equations are based on studies in climate chambers under

strictly controlled climate conditions, activity levels and clothing levels, and the equations

therefore only apply to buildings with full HVAC.

Global thermal comfort is based on the heat balance of the entire body and can thus be seen

as an average for the body.

Six parameters influence global thermal comfort6:

Activity level 

Thermal resistance of clothing 

Air temperature 

Mean radiant temperature 

Relative air velocity 

Water vapour pressure in ambient air 

The parameters are weighted in an equation that calculates the predicted mean vote (PMV)

on the seven point scale shown in Table 1.

Table 1 Seven-point thermal sensation scale 

+3 Hot
+2 Warm
+1 Slightly
0 Neutral
1 Slightly cool
2 Cool
3 Cold
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Assuming that votes outside 1 and 1 can be regarded as persons being dissatisfied with the

thermal environment, Fanger describes the relation between PMV and the predicted

percentage dissatisfied, PPD, with Equation 16. The relation is also shown in Figure 1.

Equation 1 

Figure 1 Predicted percentage dissatisfied, PPD, as a function of the predicted mean vote, PMV. 

As can be seen from Figure 1, Fanger found that even with a PMV of zero, 5% would still be

dissatisfied with the thermal environment, because thermal comfort is subjective.

In addition to global thermal comfort, Fanger found that local thermal discomfort can be

caused by:

Draught

Radiant asymmetry 

Floor temperature 

Vertical air temperature gradient 
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These cause local thermal differences between body parts, which is perceived as

uncomfortable, even if global thermal comfort is achieved. The percentages dissatisfied, due

to each of the four causes were found through climate chamber experiments and correlation

equations were developed.

ISO 77307 and EN 15 2514set up criteria for three thermal comfort categories in order to sum

local and global thermal comfort. For each category, all criteria measured should be satisfied

simultaneously. The criteria are listed in Table 2, were category D covers conditions outside

the other ranges.

Table 2 Categories of thermal comfort. 

Fanger’s methods are derived from climate chamber tests and only apply to buildings with

HVAC. In order to make it applicable also to buildings with natural or hybrid ventilation, an

expectation factor was added to the PMV calculations in 20028. The factor is multiplied to

the calculated PMV and takes into account that occupants in non air conditioned buildings

have lower expectation to the thermal environment and therefor votes closer to neutral

than would be the case in an air conditioned building under the same thermal conditions.

The expectation factor varies between 0.5, for regions with few air conditioned buildings, to

0.9 or 1.0, for buildings in regions where air conditioned buildings are common.
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Assessment of method in relation to simultaneous optimisation of thermal comfort

and energy efficiency

The method proposed by Fanger involves a number of parameters not calculated by a

building energy simulation tool including air velocities and parameters related to occupants,

which are factors with a great uncertainty and variation, both among people in a room and

over time for a specific person or room.

The method requires iterations, because the skin temperature of the person depends on

both activity level and conditions in the thermal environment, which will increase simulation

time.

On the other hand, the methods by Fanger calculates one global thermal comfort parameter

and four parameters for local thermal discomfort, making it possible to evaluate thermal

comfort broadly, which in turn enhances the possibilities for optimising building design for

better thermal comfort. The thorough and broad approach makes it possible to both

pinpoint possible problems, mainly using the local thermal discomfort parameters, and make

a compliance check of thermal comfort in a given building design.

Adaptive thermal comfort

The adaptive approach to thermal comfort is based on field studies from around the world.

de Dear and Brager gathered measurements and questionnaires from 160 buildings in 9

different countries and compared the occupants’ actual votes on the seven point scale in

Table 1 with the calculated PMVs and PPDs using Fanger’s equations9. They found that for

buildings with full HVAC systems, the calculated PPDs matched the actual votes, but for

buildings with natural or hybrid ventilation Fanger’s equations overestimated the

percentage being dissatisfied under warm conditions. Further they found that occupants’
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actual votes in natural or hybrid ventilated buildings depended largely on the outdoor

temperature.

Their findings led them to develop equations for calculating adaptive thermal comfort,

where the human ability to adapt physiologically, psychologically and with its behaviour

influences the perceived thermal comfort in buildings with natural or hybrid ventilation.

The adaptive thermal comfort model describes the optimum operative temperature inside

the building as a function of the external temperatures for the previous days. In the ASHRAE

55 standard5, the relation between external temperature and indoor comfort temperature is

given as:

Equation 2 

Where is the indoor comfort temperature and is the mean outdoor

temperature for a time period between 7 and 30 days back in time.

Centred on the indoor comfort temperature, a band of 5°C describes 90% acceptability

among users and a band of 7°C describes 80% acceptability.

In the European standard on indoor environmental inputs, EN 15 2514, adaptive thermal

comfort is included for naturally ventilated buildings. Based on measures in European

buildings, the indoor comfort temperature can be calculated as:

Equation 3 
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The bands in the European standard are 4°C for thermal comfort in category I, 6°C for

thermal comfort in category II and 8°C for thermal comfort in category III.

In Figure 2, the limits for comfort temperatures are shown depending on the mean outdoor

temperature according to the European standard, EN 15 2514.

Figure 2 Design limits for operative temperature indoor, depending on weighted running mean outdoor temperature when working with

adaptive thermal comfort in buildings without mechanical cooling. 

Assessment of method in relation to simultaneous optimisation of thermal comfort

and energy efficiency

The adaptive method is simple to calculate, because it assumes that people will adapt to the

thermal climate in the building, by regulating their clothing, adjusting window openings etc.,

which on the other hand limits the method to buildings where occupants have these

opportunities for adjustments. Furthermore the method only applies to offices.

The equations for adaptive thermal comfort needs no information on activity level and

clothing, which are factors with a great uncertainty and variation, both among people in a

room and over time for a specific person or room.
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For optimisation of thermal comfort, the adaptive method is only valid in buildings with

natural or hybrid ventilation, which excludes HVAC buildings. Compared with Fanger’s

method, the calculations are much simpler and all inputs are known from building energy

simulation tools, but adaptive thermal comfort is also a black box calculation. The method is

based on measures in several office buildings, where some probably worked better than

others.

The method is well suited for a general compliance check of a building’s thermal comfort,

especially if combined with Fanger’s measures for local thermal discomfort.

In an optimisation process, poor design might not be caught if the mean air temperature in

the room is acceptable and the method is therefore weak in the design phase.

Thermal environment and productivity

Fanger’s method and the adaptive method of evaluating thermal comfort are both focused

on how occupants perceive the thermal environment. Another approach is to connect

thermal conditions with workers productivity.

Most recent studies in this field focus on office work in call centres, schools and laboratories.

In 2006 Seppänen et al.10 compiled data from several field studies to find the most reliable

correlation between thermal environment and productivity:

Equation 4 

Where is the productivity relative to maximum value and is the indoor room

temperature in °C.
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The equation is subject to high uncertainty as the performance measured varied greatly

from study to study. All buildings in the studies had full HVAC and the tasks measured were

routine in nature.

Jensen11 bases his correlation on climate chamber tests and describes the relation between

productivity and thermal sensation vote, as:

Equation 5 

Where is the productivity relative to the maximum value and is the thermal sensation

vote on the scale from 3 to 3 in Table 1.

The relationships between thermal environment and productivity by both Seppänen10 et al.

and Jensen11 are plotted in Figure 3. In order to compare the correlations, the horizontal

axes are chosen to cover approximately the same range.

Figure 3 Relative performance as a function of thermal environment. To the left the relation found by Seppänen et al.10 from field studies and 

to the right the relation found by Jensen 11 from climate chamber tests. 

Both correlations describe the highest performance at a slightly cool environment. But were

performance is found to be highly dependent on room temperature in the studies by
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Seppänen et al. 10, Jensen 11 finds that performance only varies slightly with the thermal

environment.

According to Leyten et al. 12, the differences between the two studies can both be due to the

uncertainties that lie within these types of studies, but also because the one by Jensen11 is

based on studies in a climate chamber, with relatively short time periods and the studies

gathered by Seppänen et al.10 are from field studies. Leyten et al.12 find that the productivity

varies more with the thermal environment in field test than in climate chamber tests,

presumably due to less motivation in the performed tasks in the climate chambers, and

because in the climate chamber the tests persons performed mental/creative work instead

of simpler routine office work, which is the fundament of the field studies.

Assessment of method in relation to simultaneous optimisation of thermal comfort

and energy efficiency

The relation between thermal environment and productivity is easy to calculate if either the

indoor temperature or the thermal sensation vote is known. Calculation of the thermal

sensation vote requires the use of Fanger’s method and thereby knowledge on the six

parameters affecting thermal comfort.

In an optimisation process, the method has the same disadvantages as the adaptive thermal

comfort method, because it is not possible to identify causes of thermal comfort problems.

Selection of method for thermal comfort evaluation

Of the three methods described for evaluating thermal comfort, the method by Fanger is

selected for further exploration on improving the simulation of thermal comfort.
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Fanger’s method is selected because it gives the best possibilities to point out causes for

thermal discomfort, which is fundamental in the optimisation process of a building. Only by

knowing if draught is a problem, is it possible to change the layout of inlet openings in a way

to avoid it, or to take action when a large glassed façade generates radiant asymmetries in

cold or warm parts of the year.

Fanger’s method is the most complex of the methods and to be able to calculate both global

thermal comfort and local thermal discomfort, the following input parameters are required:

Global thermal comfort:

- air temperature 
- mean radiant temperature 
- relative humidity 
- relative air velocity 
- clothing level
- activity level 

Local thermal discomfort, draught:

- air temperature 
- air velocity 
- turbulence intensity 

Local thermal discomfort, vertical air temperature difference:

- vertical air temperature difference between head and feet 

Local thermal discomfort, warm and cool floors:

- floor temperature 

Local thermal discomfort, radiant asymmetry:

- difference in thermal radiation side-to-side for a horizontal plate 
- difference in thermal radiation side-to-side for a vertical plate 
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The air temperature, relative humidity and surface temperatures are normally known from

building energy simulations. The rest of the needed parameters must be calculated to

evaluate thermal comfort.

Of the input parameters, it is chosen to focus the further exploration on radiation, air

velocities and the human factors: activity level and clothing level. These are chosen because

they have the greatest influence on thermal comfort.

Thermal radiation affects both mean radiant temperature and radiant asymmetry. Mean

radiant temperature affects global thermal comfort nearly as much as the air temperature.

Mean radiant temperature is calculated from surface temperatures, emissivities of surfaces

and view factors between surfaces and person. View factors describe how much each

surface affects the person and do not vary with time for the same position and orientation.

To take into consideration that we do not know where a person is situated at a given time,

view factors must be calculated for several positions and orientations in the room, but they

only need to be calculated once, in order to improve the calculations of thermal comfort in

all time steps of a simulation.

Air velocities are chosen because draught is one of the main causes of complaints of thermal

environments13 and air velocities also play an important role in global thermal comfort. Air

velocities are chosen even though there is a contradiction between building energy

simulation tools and the calculation of air velocities, as one of the pillars in building energy

simulation tools is the assumption of full mixture of the air in the room.

Clothing is interesting because it is a quick way for occupants to influence their thermal

comfort. According to Fanger’s equation, a change in clothing from trousers and t shirt (0.6

clo) to a light business suit (0.9 clo) can change PMV from 1.2 to 0.5, which corresponds to
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PPDs of 35.2% and 10.2%. Fanger found that under the same conditions, including same

clothing insulation, there will always be at least 5% dissatisfied with the thermal

environment. In a real building, people can vary their clothing to optimise their thermal

comfort and in order to make realistic simulations, it is vital to take this effect into

consideration, as it may potentially lead to more realistic evaluations of thermal comfort.

Activity level is also a means for occupants to influence their own thermal environment by

e.g. standing up or sitting down. A change in activity level from seated relaxed (0.8 met) to

standing (1.2 met) can change PMV from 2.2 to 0.3, resulting in a change in PPD from

84.9% to 6.9%. Occupants’ thermal adjustment through activity level is extremely interesting

to be able to simulate.

Uncertainty and variations

The nature of the parameters required for simulating thermal comfort using the equations

by Fanger differ very much. Some are related to the building, others are related to the

occupants. Some vary greatly over time, others are more stable. Some we can calculate very

precisely, others are highly uncertain predictions regardless of how much effort we put into

it.

To do justice to the research of Fanger and the future decisions made based on the

calculated results, it is important to somehow take into account, the effect of uncertainty

and variations of the input parameters. This is seen as very important, because calculations

like this can quickly be branded as useless because some parameters have both high

uncertainty and high impact on the results. If instead it is possible to show the range of the

results in the sample space, decisions can be made on an informed basis.
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The objectives for the rest of this paper are therefor to explore possibilities for:

- Simulation of thermal comfort in current building energy simulation tools 

- Calculating the input parameters: mean radiant temperature, air velocity, 

clothing and activity level, in a setup where optimisation of thermal comfort is 

based on building energy simulations 

- Handling uncertainties and variations on input parameters in the final results. 

Building energy simulation tools and thermal comfort

Four building energy simulation tools were explored; all of them have made an effort to give

a better estimate of thermal comfort than an operative temperature based on area

weighted mean radiant temperature and air temperature.

In TRNSYS14 the simulation of predicted mean vote (PMV) and predicted percentage

dissatisfied (PPD) was built in by Solaini et al.15 in 1996. Mean radiant temperature is

calculated by a sphere representing the human body, while the user should provide

information on: air velocity, humidity, clothing and activity level.

EnergyPlus2 can simulate global thermal comfort measured by PMV and PPD, and

additionally it is possible to simulate adaptive thermal comfort. The simulation of global

thermal comfort is based on inputs given by the user on activity level, air velocity and

clothing level. Mean radiant temperature can be calculated in three different ways: as an

area weighted mean of surface temperatures, as a so called “surface weighted mean” and

by using angle factors. The “surface weighted mean” is used to simulate a person situated

close to a surface and is calculated as the average between the surface temperature in

question and the area weighted mean of all surfaces in the room. The angle factor mean
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radiant temperature is found by weighting the surface temperatures according to the angle

factors or view factors, which have to be given by the user.

ESP r16 and IDA ICE17 also provide possibilities of calculating global thermal comfort when

the user provides information on air velocity, activity level and clothing level, while the tools

can calculate simplified mean radiant temperatures.

None of the four building simulation programs were able to calculate the thermal radiant

impact on a person in multiple points in a room, to calculate thermal comfort with only

minimum of extra input from the user or to calculate any of the measures for local thermal

discomfort. The next sections will explore whether it is possible to make these calculations,

since it hasn’t been implemented yet.

Radiant impact

Thermal comfort is influenced by radiation in two ways: heat loss to the surroundings by

thermal radiation and asymmetry in thermal radiation. Radiation affects both global thermal

comfort and local thermal discomfort.

Thermal radiation can be divided into short wave radiation and long wave radiation. Short

wave radiation is the type of radiation received from the sun or a radiant heater, and long

wave radiation describes the radiation between surfaces or objects by emission due to

temperature differences. Short wave radiation transports most energy and is directed, while

long wave radiation can be treated as diffuse.

Thermal comfort in building energy simulations is typically evaluated by the operative

temperature, which is the average of the air temperature and the mean radiant temperature

in the room. In most programs, only a single operative temperature is found for a room and
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it is calculated as the surface area mean, even though the mean radiant temperature can

vary greatly e.g. if the room has large glassed areas.

The impact of thermal radiation depends on surface temperatures, the emissivities of

surfaces and how big a part that the given surface covers of a person’s radiant field, which is

measured by a factor named either the view factor18 or the angle factor19. Knowledge about

the view factor between a person and the surfaces surrounding him is one of the things

needed for a better calculation of the radiant impact and thereby better calculations of

thermal comfort.

A person exchanges radiation with the surroundings through his effective radiation area. The

effective radiation area is smaller than the total skin area because parts of the body

exchange radiation with the body itself, e.g. between fingers or between the legs. James D.

Hardy and Eugene F. DuBois20 measured the effective radiation area in 1938 by means of a

wrapping method. A person was wrapped in paper like an Egyptian mummy, and the surface

area was measured by rubber coating the paper – a technique similar to the one used for

measuring the total area of the human skin also known as the DuBois area.

Later on, several studies used photographs to find the effective radiation area, the projected

area and the projected area factor of the human body. Guibert and Taylor21 had people lying

down in four different postures from erect to crouching. The study involved three persons,

and 32 photographs were taken of each person. The photographs were taken in a half

sphere, taking advantage of the bilateral symmetry of the human body. The distance

between the person and the camera was 10.7 m 12.2 m. A large distance is desirable to be

able to assume that the measured projected area equals the spherical projection. The

radiation area was found dependent of posture and independent of body type. Photos were
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taken of both nude and clothed persons, where the effective radiation area of the clothed

body was a factor 1.14 higher than for the nude body. The effective radiation area factor was

found to be 0.77 for a standing person and 0.70 for a seated person. Projected area factors

were given as diagrams for the four postures.

Geometrical shapes as simplifications of the human body were suggested for easier

calculation of projected area factor and view factor. Taylor22 suggests the use of a sphere to

represent the seated person and a cylinder for the standing person. Underwood and Ward23

suggest an oval cylinder as a good fit for their results for standing persons. Underwood and

Ward’s results were obtained by a photographic method, with photos taken of 25 male and

25 female test persons. The photos were taken at a distance of 4.57 m and with irregular

steps of altitude angles due to their test fixture. The small distance between subject and

camera required them to make corrections of the measurements to compensate for the

parts of the body close to the camera being bigger than the parts furthest from the camera.

To avoid these compensations, they found that pictures should have been taken from a

distance of a least 20 m.

Fanger et al.24 adopted the test set up by Underwood and Ward with some modifications.

Mirrors were used in the fixture to “double” the distance between subject and camera to 7

m and to make the switches between altitude angles quicker, because the camera itself was

not moved; only the mirrors were adjusted. 78 pictures were taken of each of the 10 male

and 10 female subjects with angle steps of 15° for both altitude and azimuth in 1/8 of a

sphere. The results were given as diagrams for projected area factors for seated and

standing persons. The projected area factors were used for making diagrams of view factors

from a person to walls, ceilings and floors in an orthogonal room, because in contrast to the
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earlier studies mentioned, this study was aimed at thermal comfort in a room. To read the

view factors from the diagrams, each surface must be divided as shown in Figure 4 and the

distances a, b and c used as input to read the diagrams.

Figure 4 To read the view factor of a surface from Fanger's diagrams, the surface needs to be divided according to the centre of the person 

and the distances a, b and c known. 

The results for view factors between man and surrounding surfaces were used when

planning the studies on radiant asymmetry 25,26. In the 1980 article, Fanger et al. introduced

the term ‘radiant temperature asymmetry’ as being the difference between the plane

radiant temperatures of two opposite sides of a plate. Discussions on how this definition

reflects the sensation by a person has not been found.

In 1988 Steinman et al.19 developed view factor diagrams for inclined surfaces by using

computers and cubic spline to connect the results obtained by Fanger. With the new

diagrams, view factors are no longer limited to orthogonal rooms. The principle of dividing

the surfaces according to the person’s centre, as shown in Figure 4, is also used in the new

diagrams, supplemented with angles for the inclination.

Researchers using the photographic method to determine projected area factors make an

effort to approach the results as if pictures are taken from an infinite distance. Horokoshi et

al. 27 question this approach as applicable in the calculation of view factors between a

person and the surfaces in a room, especially concerning the floor. They argue that a more
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realistic measure of how a surface affects a person is found by means of an orthographic

projection camera method, especially for surfaces close to the person, as the findings of

Fanger are only valid if the distance to a surface is at least 7 m. In their own study,

photographs were taken from a number of points on a surface instead of on a sphere. The

method better takes into consideration that the human body is not plane, and parts of the

body closest to a surface therefor appear larger.

With the new decade, the 1990s, diagrams were substituted with algorithms that can be

used in computers to calculate both projected area factors and view factors. Rizzo et al. 28

and Cannistrato et al. 18 transformed Fanger’s diagrams into polynomial algorithms. The

algorithms calculate the projected area factor for a standing or a seated person from input

on azimuth angle and altitude angle, and view factors are calculated from inputs on the

position of the surface in correlation with the person, using the method shown in Figure 4. In

2000, algorithms for inclined surfaces were added 29, making it possible to calculate view

factors for any plane surface.

New studies have been made using digital photographs and computer technology for

measuring the projected area of a number of Italian subjects 30–32, and these measures are

used in a tool for calculating view factors to any plane surface, though still dividing the

surface according to the centre of the person, as shown in Figure 4.

A comparison between studies of projected area factors shows that nationality only has a

slight influence when comparing data for subjects from Australia, Italy, China, Japan,

Germany and the US 33.

Instead of using a camera and real persons, Tanabe et al.34 use numerical computing to

calculate projected area factors. The shape of a person used is obtained by commercially



25

available software, and the shape is chosen to be close to the measures for Fanger’s test

persons. Tanabe et al.34 found agreement within 10% accuracy of Fanger’s results when

converting the results into diagrams for reading view factors to surfaces. Thereby, they

showed that numerical simulations can be used in studies of projected areas and view

factors.

The use of numerical simulations and thermal manikins provide a basis for more detailed

studies on the radiant impact of specific body parts 35,36 and has been used for finding

projected area factors of standing and walking persons and for comparisons between people

with different weight and gender 37.

In conclusion it is found that the area of radiation to the human body has been researched

for decades, though none of the developed calculations have been built into simulation tools.

Based on the research it looks promising to develop a method for calculation of view factors

suitable for thermal comfort simulations and thereby improve simulation of mean radiant

temperature and thermal radiant asymmetry in building energy simulation tools. An

advantage in this connection is that view factors do not change over time, calculation of

view factors therefore only needs to be performed once for the room, while still improving

calculations in all time steps.

Air velocities

Air velocities affect both global thermal comfort and the sensation of draught.

Exact calculations of future airflows are almost impossible because airflows are so easily

affected by obstacles or differences in temperature. The most precise calculations can be
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made by computational fluid dynamics (CFD), though the calculation time is a major

drawback in connection with long term simulations.

A premise of this literature review is the ability to make long term, whole room simulations

of thermal comfort in connection with building energy simulations. The review has,

therefore, covered not only CFD but also zonal models and flow elements.

CFD and building energy simulations

Building energy simulations and CFD complement each other in the simulation of thermal

comfort. The needed boundary conditions to CFD are outputs from building energy

simulations, and CFD is able to make detailed calculations of the airflows, which enhances

the calculations of building energy simulations.

The fundamentals of CFD are the solutions of Navier Stokes equations e.g. by using the finite

volume method. Navier Stokes equations are differential equations and the finite volume

method solves them by means of discretisation, where a balance equation is set up for each

small volume in the room as described by Patankar38.

In 1988, Chen39 combined CFD and building energy simulation to optimise the simulations of

energy consumption and CFD is used to improve the calculations of heat transfer caused by

differences in air temperatures in the room.

Beausoleil Morrison40 researches and describes in his thesis how a coupling between CFD

and the building simulation program ESP r should be done in order best to model indoor

airflow and internal surface convection. He develops an adaptive controller that monitors

the evolving thermal conditions and airflow conditions in the room, and this information is

used to select suitable boundary condition for each surface to be used in the CFD
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simulations. The integration between CFD and ESP r makes it possible to make better

calculations of internal airflows and heat flows between rooms. The objective of the study

was not long term evaluations of thermal comfort, but better calculations for shorter

periods of time, where the combination between the tools makes simulations for evolutions

of flows better and easier.

By coupling CFD and building energy simulations, it is possible to make CFD simulation for

longer periods by assuming stationary conditions for each calculation instead of calculating

the evolution of the flows in the room. Zhai et al.41 describe a number of strategies for

coupling between the programs. One strategy can be to make CFD simulations for specific

hours of each day, e.g. 8:00 am. Each time in which CFD simulations are used, it can be

chosen to make iterations between the programs until the results converge or it can be

chosen to simply move on to the next time step without iterations.

Zhai et al.42 give an overview of different strategies for the coupling between building energy

simulations and CFD and lists some fundamental rules based on sensitivity analysis and cost

benefit of when to choose a coupling strategy and which coupling strategy to choose. For

instance, it is recommended to use simple energy simulations in the early design phase,

while a method coupling energy simulations with CFD is recommended if the indoor air

environment is heavily dependent on thermal boundary conditions. The type and

frequencies of coupling depend on the size of fluctuations and influences from the outdoor

environment on air movements and how precise the results need to be.

All articles found are focused on short term simulations of e.g. one day, when more accurate

simulations were made. Long term simulations are not feasible with CFD due to the long

calculation time.
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Zonal models

“A zonal model is an intermediate method between representing a space by a single

homogenous node and that offered by the CFD techniques”43

Zonal models make it possible to make simulations of indoor air fields with lower calculation

times than CFD. The models use a coarser grid supplemented with models for airflow. Zonal

models are easier for a user to define than CFD models and are, therefore, more applicable

as a tool in the early design phase of buildings.

In 2001, Haghihat et al.44 developed a zonal model that can be integrated into building

energy simulation tools and can calculate global thermal comfort in a room. Jet

characteristic equations are used to model mechanical ventilation, and good agreements

were found between the results of the zonal model, the CFD model and the experimental

data. They find that the model can be used to study the impact of e.g. room layout and air

inlet diffuser types on thermal comfort, and they conclude that their model is a feasible

approach for thermal simulation of naturally and mechanically ventilated rooms from an

engineering view point.

A method quite similar to a zonal model is the nodal model. Rees and Haves45 developed a

nodal model for rooms with displacement ventilation and chilled ceilings. The room is

divided into a number of vertical zones, and calculation nodes are placed in each zone and at

the boundaries between zones. The method separates the air movement in the plumes from

the rest of the room in the calculations and is able to reasonably reproduce measured air

balances and room temperatures.
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Flow elements

Flow elements are based on a principle of dividing the flow in the room into areas that can

be treated independently of surrounding flows. Flow element theory is based on a

combination of theoretical fluid dynamics and empirical experiments and observations.

Flow elements describe the flow pattern from e.g. an inlet based on input on initial air speed,

air inlet area and a diffuser constant, K. The diffuser constant is found experimentally for

each inlet device. In case of non isothermal flows, the temperature difference affects the

flow and the effect is expressed by the Archimedes number and a constant taking the

distribution of heat sources in the room into account.

According to P.V. Nielsen46, flows occurring in ventilated rooms can be divided into four

categories with a total of 14 flow types, as shown in Figure 5.
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Figure 5 Flow elements occurring in ventilated rooms. The flow elements are divided into four categories (Nielsen 1994). 

Some of the first descriptions on flows in a room – that are still in use – are from the 1950s

when Koestel described the velocity decay47 and trajectory48 of a horizontal free jet.

Flow elements are typically based on experiments in empty rooms with a simple box

geometry while the buildings in real life would be filled with furniture and occupants. J.R.

Nielsen49 tests the influence of furniture on the air movements in the upper part of a room

with mixing ventilation and the maximum velocity in the occupied zone. The study is made in

order to determine if flow elements derived for empty rooms are fully valid in furnished

rooms. Air velocities are measured in a test room that could have three different lengths,

and the velocities are measured both with and without furniture in the half of the room

opposite the wall mounted inlet. It was found that the velocity in the occupied zone is lower
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in the furnished room than in the empty room. Thus designing according to an empty room

is on the safe side in relation to avoiding draught.

In the paper “Analysis and Design of Room Air Distribution Systems” 50, flow elements, CFD

and full scale experiments are discussed as complementary methods for designing room air

distribution systems. Nielsen argues that flow elements are well suited when ventilation is

either based on mixing or displacement strategies. However, some air distribution systems

cannot be adequately described by flow elements, for example a textile ceiling diffusor inlet

or vertical air distribution systems where draught is mainly generated by the heat load in the

room and not by the air supply. In these situations, CFD or full scale experiments are

preferable.

Flow elements have been implemented in the Swedish software for indoor and climate

simulation tool IDA ICE51 . This tool assumes that when two flow elements collide, the one

with the highest velocity will “survive”.

Flow elements are also used in the flow program DIMcomfort, developed by the ventilation

company Lindab. The airflows from their diffusers are shown with the ability to regulate

airflow and temperatures to see how this influences the flow pattern in the room. Lindab’s

tool has been developed through measurements in an air laboratory and is specific for

Lindab’s diffusers, and this shows the possibilities of using flow elements for fast simulation

and comprehensive visualisation of airflows in rooms.

The description of flow elements is continuously growing, covering more flows and

interactions. Cao et al.52 have recently contributed to the description of flow elements

describing the velocity distribution when a plane jet collides with a corner.
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Of the three methods described here, flow elements and zonal models are the most

promising in connection with simulations of thermal comfort based on building energy

simulations.

The personal factors: Clothing and activity level

Two of the six parameters affecting global thermal comfort are related to the occupants and

are outside the range of the engineer’s optimisation. These are the clothing and activity

levels.

In building simulations, occupants are often assumed to have one of two fixed clothing levels:

one for summer conditions and one for winter conditions, typically 0.5 clo and 1.0 clo.

To investigate how variation in clothing affects the building’s energy demand, G.R.

Newsman53 performed building energy simulations with varying flexibility in the clothing

adjustment and found that significant energy savings can be obtained through optimal

adjustments of clothing without compromising thermal comfort. G.R. Newsman used a

simplified version of Fanger’s thermal comfort equation in a finite difference model. G.R.

Newsman concludes that it is vital to consider occupants’ behaviour when modelling

buildings’ energy demand and thermal comfort.

Through a literature review of field experiments, G.S. Brager and R.J. de Dear54 find a

distinction between thermal comfort in air conditioned vs. naturally ventilated buildings and

conclude that the difference is caused by adaptation. Through adaptation of i.e. clothing,

better thermal comfort is experienced in naturally ventilated buildings under the same

circumstances as in air conditioned buildings.
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Several studies have investigated how people vary their clothing. A study in Sydney by C.

Morgan and R.J. de Dear55 showed that people vary their clothing according to outdoor

temperature when a strict dress code is not employed. During the warm summer of 2006 in

Switzerland, Haldi and Robinson56 found that people mainly opened windows and

adjustments of solar shading to improve their thermal comfort. Clothing was seldom varied

during the day but the level of clothing was found to be correlated to the outside

temperature at 6 a.m. Also, de Cali et al.57 found a correlation between clothing level and

the outside temperatures the same morning and the previous days. In the same study, they

found that the clothing level is independent of gender.

None of the studies investigating the effect of adjusting clothing led to people being more

satisfied with the thermal environment, but several studies show a better estimation of

clothing level based on outdoor temperatures, than the two steady assumptions often used.

Activity level is a way of influencing a person’s thermal environment; unfortunately the

uncertainty of the activity level is high, both because it is difficult to measure and estimate

for a given situation, and because the metabolic rate for the same activity varies among

people. Uncertainty on the metabolic rate is typically around 50% but can be as high as 100%

according to Parsons and Hamley58.

As the measure of thermal comfort, PMV is greatly influenced by both activity level and

clothing. Havenith et al.59 question the use of PMV as a measure, because both activity level

and clothing level are subject to high uncertainty. To determine the activity level, they list six

methods ranging from measurements to classification according to the kind of activity in a

table. The most accurate method has an accuracy of 15%, and Havenith et al. find that a
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difference in activity level of 15% can easily lead to a difference in the calculated PMV of 0.3.

The comfort categories suggested in ISO 77307 are, therefore, questionable.

In conclusion only few studies were found on activity level in connection with thermal

comfort and they show that the activity level is hard to estimate. To improve simulation of

thermal comfort, more research in this area would be beneficial, e.g. starting with a

thorough literature review focused solely on activity level and including physiologic journals

and researchers.

Dealing with uncertainties

Simulations of thermal comfort and building simulations in general are subject to

uncertainty, especially due to occupant behaviour. This means that the results of the

simulations are only valid if we have correctly assumed how people will act, which is nearly

impossible in real life.

For a known set of indoor climate conditions, the predicted mean vote (PMV) can be

calculated from the equations in ISO 77307. Taking into consideration that not all votes are

equal to the mean, Jensen et al.60 made a Bayesian network between the thermal conditions

in a room, gender, age and thermal vote based on the ASHRAE RP 884 database61. The

Bayesian network gives the probability of each thermal comfort vote when thermal

conditions, gender and age are known. By using the Bayesian network, the uncertainties

associated with human behaviour are included in the simulations.

Hoes et al.62 evaluated the effect of user behaviour on building performance with the aim of

creating a tool to help make buildings that are more robust to the influence of user

behaviour. The background of the study is that the more energy efficient buildings become,
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the higher the impact of users gets on the buildings’energy consumption. User behaviour is

modelled using a Monte Carlo approach together with the building simulation tool ESP r,

and they find from simulations of five test cases that improved modelling of user behaviour

can optimise the overall building performance.

These two examples show that the handling of uncertainties in building energy simulation

tools is definitely possible, whether it is using a Bayesian network or the simpler Monte Carlo

approach.

Conclusion

For optimisation of thermal comfort in parallel with building energy optimisation, the

methods described by Fanger were found to be most adequate. The methods make it

possible to spot causes of thermal comfort problems, but are also the most complicated and

uncertain to calculate as several of the input parameters are not direct outputs from

building energy simulations.

A closer look into four building energy simulation tools, which claim to be able to calculate

PMV and PPD, showed that inputs were needed by the user on e.g. view factors, air

velocities, clothing and activity level.

Based on the review, it looks promising to develop methods for automatic calculations of

view factors, air velocities and clothing level from output parameters from building energy

simulations. The activity level was found to be highly uncertain and to vary among people. In

the investigated literature, there no studies were found on the variation in activity level in a

way that could be used for building simulations.
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Several studies on dealing with uncertainties in building simulation because of uncertain

occupant behaviour were found and the methods also apply to simulation of thermal

comfort.

It is therefore recommended to expand building simulation tools with calculation of thermal

comfort based on the work by Fanger to assist designers in optimising buildings with regards

to energy and thermal comfort simultaneously.
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SUMMARY

In the same room, people will wear different amounts of clothes if there is no strict dress code.
Ideally everybody would put on just the right amount to feel thermally comfortable, but that is 
not always the case. To improve simulations of thermal comfort, an estimate of clothing 
insulation is needed. This includes the distribution within a group of people and if this causes 
more or less people to be dissatisfied. From the research data, the relation between 
temperature and clothing insulation was found and the distribution among people was studied. 
It was found that the variation in clothing among people is higher at low temperatures than at 
high temperatures, and that people do choose their clothing according to thermal preference, 
but that the distribution of thermal comfort votes is the same.

INTRODUCTION

Improving comfort is one of the main reasons for the development of both buildings and
clothing. Basic needs were fulfilled centuries ago, and refinements are no longer made just to 
improve comfort, but also to promote an image by making eye catching buildings and 
fashionable clothing. At the same time, we still expect to be thermally comfortable in 
buildings. To ensure thermal comfort in future buildings, prior simulation of thermal 
conditions gives an opportunity to compare different layouts of the buildings in order to 
optimise both thermal comfort and energy consumption. To get the most reliable simulations 
of thermal comfort, the variation and distribution of clothing insulation of the occupants is 
essential, as it has a great influence on the perceived thermal comfort. If we can understand
how clothing insulation varies over time, with the factors already known from the building 
energy simulation tools, the simulation results would come closer to reality. But also the 
distribution in clothing insulation within a group of people is interesting, and a hypothesis 
tested in this paper is that “when people choose their clothing, they will (to some extent) do it 
in relation to their thermal preferences, and that will result in less people being dissatisfied 
with the thermal climate, than can be calculated by the relation between Predicted Mean Vote 
(PMV) and Predicted Percentage of Dissatisfied (PPD) as found by P.O. Fanger (Fanger 
1970)”.

The calculation methods developed by P.O. Fanger (Fanger 1970) are based on climate 
chamber observations where subjects were exposed to the same thermal climate with the same 
amount of clothing and activity level. From the studies, variations in thermal preference was 



found, and these are the reason for PPD being equal to 5% at optimum thermal conditions, 
PMV = 0. In the adaptive thermal comfort model (de Dear and Brager 1998) both activity 
level and clothing insulation is taken out of the equation, which is much more simple than 
Fanger’s model. The adaptive model is based on data from real buildings and not climate 
chambers, and it is part of these data that were used in the study together with some of 
Fanger’s data. By finding the variation of clothing insulation over time, this part of the 
adaptation should be possible also to simulate by using PMV and PPD, giving a more reliable 
result compared with using a standard clothing level of e.g. 1.0 in winter and 0.5 clo in 
summer.
The variation in clothing insulation was earlier found to be independent of sex (De Carli et al. 
2007) and more dependent on the outside temperature in the morning and the previous days.
In the current study, the relation between clothing insulation and both indoor and outdoor 
temperatures is studied. The relation to the current indoor temperature is relevant if assuming 
that users know their buildings and choose their clothing according to their expectations and 
adjust according to the climate they experience. The study also covers whether the 
distribution in clothing depends on thermal preference and whether this leads to less people 
being dissatisfied.

METHODOLOGIES

The database from the RP884-project (de Dear 1998) was used. Only class 1 projects contain 
information on clothing insulation. The class 1 data in the RP884 project come from 15
projects including 62 buildings in Canada, Australia and USA, in both summer and winter 
conditions. The buildings are used for office, court, police and jail with activity levels 
between 1 and 1.8 met.

Data were deleted where information on clothing level, activity level or vote of the thermal 
climate were missing, and also where clothing was set at 0 clo (naked).

The data were divided on buildings with and without mechanical cooling. In turn, these data 
were divided by different parameters: operative temperature, outside morning temperature, 
insulation level of clothing, etc. One or two parameters were used to divide the data each time, 
to see how the variation was relative to the parameters. In each subgroup, mean and standard 
deviation was calculated. This gives a picture where each temperature step is weighted 
equally even though they did not contain the same amount of data. Subgroups containing less 
than 10 data points were not taken into consideration.

Example: To investigate the influence of operative temperature on the level of clothing 
insulation (including chair), the data was divided according to the operative temperature 
inside the building with steps of 1°C, and within each step a mean value of the insulation was
calculated together with the standard deviation. The data point 23°C includes incidences 
where the operative temperature had been .5°C and <23.5°C. 
The distribution of the amount of data within each temperature step of the operative 
temperature is shown in Figure 1, together with the distribution on the outside temperature at 
6AM.

Histograms showed that most data were collected at the operative temperatures of 22°C and 
23°C. More variation was seen in relation to the outside temperature, where most data were 
found between 5°C and 18°C.



Figure 1. Amount of data within each temperature interval

The first investigation aimed to find a relation between clothing insulation and a parameter 
known or calculated in a building simulation program, in order to be able to make better 
predictions of the thermal comfort in future buildings.

Secondly the distribution of clothing insulation among the subjects was investigated, to see 
whether it reflected a wish to improve thermal comfort, and whether taking the distribution
into consideration it would give less standard deviation on subjects vote on the ASHRAE
scale, that ranges from -3 (cold) to 3 (hot).

RESULTS AND DISCUSSION

Clothing insulation variation with temperature

When a person decides how much clothing to put on, this depends on a lot of factors where 
both fashion and thermal comfort are surely some of them. While it is hard to simulate how 
fashion influences the clothing level, it is easier to evaluate the influence of the wish to gain 
thermal comfort.

As it is often in the morning that an outfit is chosen, the temperature at that time of day could 
very well influence how much clothing is put on. This parameter has earlier been found to be 
a good indicator of the amount of clothing (De Carli et al. 2007). In Figure 2, the insulation of 
clothing and chair is illustrated in relation to the outside temperature at 6AM for buildings 
with and without mechanical cooling.

For both types of buildings both, there is a clear relation between the outside temperature at 
6AM and the mean of the chosen clothing insulation. There was no clear difference between 
the building types. The standard deviation from the mean of clothing insulation were greatest 
for low temperatures, while at high temperatures each value was closer to the mean, which 
might be due to a lower limit of acceptable clothing at work places.
The relation between the mean insulation (all buildings) and outside morning temperature can 
be described by:

83.00.9144012,0 2
6 Rtclo AMoutmean

Where clomean is the mean clothing insulation (including chair) and tout6AM is the outside 
temperature at 6AM.
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Figure 2. Insulation of clothing and chair in relation to the outside temperature at 6AM. To 
the left, the mean within each temperature step is shown and to the right the standard 
deviation to the mean is shown for each temperature step.

Another parameter that intuitively affects the chosen level of clothing insulation is the current 
temperature inside, the operative temperature. The relation between operative temperature and 
clothing insulation (including chair) is shown in Figure 3.

Figure 3. Insulation of clothing and chair in relation to the current operative temperature. To 
the left, the mean within each temperature step is shown and to the right the standard 
deviation from the mean is shown for each temperature step. 

The clothing insulation related to the operative temperature inside shows a distinction 
between buildings with and without mechanical cooling, where people in buildings without 
cooling (which include buildings with natural and mixing ventilation) put on more clothing,
than people in buildings with cooling (AC). Both building types show a linear relation under 
25°C and a constant level above 25°C. The standard deviation to the mean (right figure) 
showed that there was more variation in clothing at low temperatures than at high 
temperatures and it also looked as if the variation was higher in buildings without cooling.
Compared with the standard deviations seen in Figure 2, the standard deviations here are 
lower.

Equations for the calculation of clothing insulation related to the operative temperature were 
divided into buildings with and without cooling and below / above 25°C.

-30 -20 -10 0 10 20 30
0.4

0.6

0.8

1

1.2

1.4
Clothing insulation incl. chair

Outside temperature at 6AM

M
ea

n

No cooling
With cooling

-30 -20 -10 0 10 20 30
0

0.1

0.2

0.3

0.4

0.5
Clothing insulation incl. chair

Outside temperature at 6AM

S
ta

nd
ar

d 
de

vi
at

io
n

No cooling
With cooling

16 18 20 22 24 26 28 30
0.4

0.6

0.8

1

1.2

1.4
Clothing insulation incl. chair

Operative temperature

M
ea

n

No cooling
With cooling

16 18 20 22 24 26 28 30
0

0.1

0.2

0.3

0.4

0.5
Clothing insulation incl. chair

Operative temperature

S
ta

nd
ar

d 
de

vi
at

io
n

No cooling
With cooling



With cooling:

25for65.0

)95.0(25for2,.4860.0552 2

op

opop
mean t

Rtt
clo

Without cooling:

25for69.0

)96.0(25for2.82940.0858 2

op

opop
mean t

Rtt
clo

The equations calculating the relation between clothing insulation and operative temperature 
have a square error closer to 1 than the one found in relation to the morning temperature. The 
standard deviations from the mean values (right hand side in Figure 3) in each temperature 
step were also smaller. These are indicators that the operative temperature is a better predictor 
for clothing insulation.

These equations can be used when estimating the clothing insulation for calculating PMV in 
for example building energy simulation tools instead of using a single or a few different 
values during the year.

Clothing insulation distribution among people

Even though equations were found that could calculate the mean clothing insulation within 
each temperature step, there is still the distribution of clothing insulation within a group of
people. To illustrate how PMV and PPD vary with clothing insulation, an example was
calculated with average values from the whole data set:

met = 1.2 clo = 0.78 ta = 23.0 trm = 23.2 v = 0.14 rh = 0.45

where met is the metabolic activity, clo is the clothing insulation, ta is the air temperature, trm

is the mean radiant temperature, v is the air velocity and rh is the relative humidity.

With the given values, PMV is -0.09 and PPD is 5%, a more or less perfect situation. If we 
then vary the clothing insulation by 0.25 which is close to the average standard deviation in 
Figure 3, PMV ranges from -0.6 to 0.3, giving a PPD’s of 12% and 7% respectively. If 
varying by the standard deviation in Figure 2, which is approximately 0.35, PMV ranges from
-0.8 to 0.4 and PPD at 19% and 8%.

The distribution of clothing insulation between subjects might be due to their thermal 
preference, and then there would actually be less dissatisfied people. To evaluate whether this 
is the case, we can start by looking at the differences in clothing insulation between people in 
cooled buildings and non-cooled buildings. Looking at the calculated PMV in each 
temperature step, as well as the subjects’ actual votes within each temperature step, the mean 
values are shown in Figure 4.



Figure 4 Relation between the mean calculated PMV and the operative temperature, as well as 
the mean actual vote by the subjects and the operative temperature.

The difference in clothing insulation level between building types cannot be found in the 
thermal sensation. Both the calculated PMV and the actual votes showed no distinction 
between building types. Combined with the earlier findings shown in Figure 3, this indicates 
that the thermal climate in the buildings without cooling is a bit chillier and more clothing is 
necessary.

To get a closer look at the influence of clothing on the perceived thermal comfort, data were
divided according to clothing level. Here there was no distinction between the building types, 
as the data in each subgroup would then be too small.

The relation between operative temperature, clothing insulation and PMV is seen to the left in 
Figure 5, and the relation to the actual vote to the right in the figure.

Figure 5 Relation between operative temperature, clothing insulation and PMV to the left and 
the relation to the actual vote to the right.

As opposed to the relation between building types in Figure 4, there is a clear distinction in 
the calculated PMV in Figure 5 between the different levels of clothing insulation, the less 
insulation the lower the calculated PMV. This means that the differences in clothing level is 
not just to compensate for differences in the thermal comfort, because the result is a clear 
distinction in PMV and a clear relation between the insulation level and the PMV.
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The relation to the actual votes is interesting in order to see whether (some of) the variation 
was due to optimising the perceived thermal comfort. To the right in Figure 5 it is seen that 
there is no clear distinction between the levels of insulation. So independent of their clothing 
insulation, people have more or less the same mean value of votes on the ASHRAE scale, 
which indicates that people (at least to some extent) vary their clothes in relation to their 
thermal preference. But as can be seen in Figure 6, the division into clothing levels, does not 
lower the standard deviation on the thermal votes by the subjects. On the right in the figure,
standard deviation when dividing into building type can be seen for comparison.

Figure 6. Standard deviations to mean values in each temperature step for the actual votes of 
subjects, divided by clothing insulation to the left and building type to the right.

A division according to clothing level does not give a lower standard deviation in the thermal 
votes. To quantify the standard deviation in Figure 6 the standard deviation on the data used 
to make the calculations for PPD (Fanger 1970) are shown in Figure 7 along with the mean 
votes according to ambient temperature.

Figure 7. Plots of the data used by Fanger for PPD calculation from PMV.

At the same clothing and activity level in a laboratory, the standard deviation on the thermal 
votes was less than 1, while it was a bit higher in the plots in Figure 6. So even when taking 
insulation of clothing into consideration, we must still expect (at least) the same level of 
dissatified as was found from laboratory studies under a clothing insulation dictated by the 
test setup.
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CONCLUSIONS

A study of the RP884 database showed that the clothing level of the people in a building has a 
linear correlation with both the temperature outside at 6AM and the operative temperature 
inside. The correlation is better for the operative temperature, where a minimum clothing 
level is achieved at 25°C.

People in buildings without air conditioning (including naturally ventilated buildings) put on 
more clothing than people in air-conditioned buildings. This does not lead to higher PMV
though, so the higher insulation must be to compensate for higher air velocities.

In general, looking at all buildings together, there is a variation in clothing which is higher 
when it is cold and a bit lower when it is warm. The variation gives a variation in the 
calculated PMV, higher PMV for high clo-values, but when looking at the actual votes, there 
is no correlation with the insulation; people experience the thermal comfort the same way.
This indicates that the distribution in clothing is due to people’s different thermal preferences.

In the hypothesis, it was established that by taking the distribution in clothing among people 
into consideration a better estimate of thermal comfort would be achieved. However even 
when looking at the thermal votes, divided on clothing insulation, the same standard deviation
was found, as when taking them all together. This means that even though we can see that 
people vary their clothing to get better comfort, the variation in thermal votes is not just 
dependent on this. The variation in clothing is still big, because there are also other reasons, 
like fashion, for varying the insulation.

To obtain a better understanding of the variations in thermal votes, more studies need to be 
carried out. Until then the variation of clothing insulation with operative temperature can be 
used for calculation of PMV in building energy simulation tools and other places, with the 
same expected percentage of dissatisfied as described by Fanger.
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Abstract: Flow elements combined with a building energy simulation tool can be used to 
indicate areas and periods when there is a risk of draught in a room. The study tests this 
concept by making a tool for post-processing of data from building energy simulations. The 
objective is to show indications of draught risk during a whole year, giving building designers 
a tool for the design stage of a building. 
The tool uses simple one-at-a-time calculations of flow elements and assesses the uncertainty 
of the result by counting the number of overlapping flow elements. The calculation time is 
low, making it usable in the early design stage to optimise the building layout. The tool 
provides an overview of the general draught pattern over a period, e.g. a whole year, and of 
how often there is a draught risk. 

Flow elements, thermal comfort, environment, design phase 

Introduction 
Draught is one of the main causes of complaints about the indoor environment in buildings 
(1). When people experience draught, they take action to avoid it. This may lead to higher 
energy consumption, e.g. by turning up the heat to compensate. By predicting the draught risk 
in the early design stage, the building design can be optimised for both low energy use and 
low draught risk. In naturally ventilated buildings, this is especially important, as the 
ventilation is integrated in the building envelope and is closely linked to the current outdoor 
climate. 

Draught risk can be simulated by CFD, but this is time consuming and therefore not used. On 
the other hand, building energy simulation tools are available that are faster but lack 
information on airflows. The two tools have been linked (2) to supplement each other for 
thermal comfort simulation, but the CFD is slowing the process down. 

Another way of estimating draught risk is to use flow elements. Flow elements describe the 
airflow in a room by equations for velocity distribution and flow patterns. Flow elements are 
derived for a number of standard situations and can be divided into categories depending on 
e.g. isothermal / nonisothermal, 2D plane flow / 3D flow, flow close to a wall or ceiling / free 
flow. Flow elements also describe flow by a cold down draught from a cold wall like a fully 
glassed wall (3,4). 

By using flow elements, velocities can be calculated in any affected point in the room and the 
accuracy in each point is not dependent on a grid or grid density. Using flow elements 
combined with building energy simulation tools, the draught in the room can be estimated for 
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a whole year for each time step. This makes it possible to evaluate not only worst-case 
scenarios, but also any other situation, giving an overview of the draught risk and a picture of 
how robust the chosen building design is against draught e.g. under different weather 
conditions. 

Flow elements for inlets 
Equations for calculating air velocity decays and flow patterns by flow elements constituted 
the basis of the method. Inputs were needed on room geometry, air temperature, and 
furthermore the inlet geometry, location, air velocity, air temperature outside and/or surface 
temperature (depending on the type of flow) were needed for each flow to be evaluated. These 
data are typically available from building energy simulation tools. 

For some typical inlets, the velocity in the centre of a jet at a given distance x can be 
calculated by: 

  3D jet  Plane flow (2D)  

Free jet  1  2 

          
         Wall jet  3  4 

 
Where ux is the velocity in the center of the jet, a0 is the area 
and h0 is the height of the opening, x0 is the distance to the 
virtual origin of the flow at the opening; Ka and Kp are 
constants depending on the inlet opening.  
 
The velocities outside the centre of the jet are calculated 
from the universal velocity profiles shown in Figure 1. 
 
The flow pattern of a jet mainly depends on the Archimedes 
number and the location of the inlet. The air will be 
accelerated downward by gravitational forces if the supply 
air is cool. Koestel (5) found that a free horizontal jet 
follows a trajectory given by: 

 

      
Figure 1 Universal velocity profiles 
for a free jet and a wall jet, the 
latter found by Verhoff (6) . 
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Where y is the vertical displacement of the flow at distance x, Ar is the Archimedes number. 

If the inlet is close to the ceiling (wall jet), the coanda effect will prevent the air jet from 
following the trajectory in Equation 5. Instead the jet will be attracted to the nearby ceiling 
until gravitational forces become greater than the pressure forces from the coanda effect. The 
distance from the inlet to this point is called the penetration length and (7–9) derived the 
equations for the calculation of the penetration lenght: 
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3D jet:  6 

Plane flow (2D):  7 

Where xs is the penetration length, Ksa and Ksp are constants depending on the room and 
heating distribution.  

When the jet detaches from the ceiling, it will not follow the trajectory given for a free jet 
(Equation 5). The results in (10) show that the flow can be approximated with a straight line 
at an angle of 45° to the ceiling. However, the air will fall directly down if the inlet 
temperature is so low that the jet is not attracted to the ceilling.  

The four trajectories that a wall jet can follow depending on the penetration length are shown 
in Figure 2. 

    
Figure 2 A wall jet comming into a room is assumed to follow one of four trajectories, depending on the 
penetration length. The dashed lines represents the parts of the flow that still need to be implemented in the 
draught risk index tool. 

Flow elements for a glassed wall 
A fully glassed wall can induce a cold down draught that will continue at the floor similar to 
displacement ventilation. The velocity at the floor depends on the distance to the wall and the 
height of the wall (11): 

 8 

Where H is the height of the cold wall, Toc is the air temperature in the occupied zone, Twindow 
is the inside surface temperature of the window and x is the distance to the wall. 

Draught risk index tool 
A tool for calculating the draught risk was made for post-proccesing of data from a building 
simulation tool. 

By using flow elements, velocities can be calculated in any affected point in the room and the 
accuracy in each point is not dependent on a grid or grid density. To get a picture of the 
velocity distribution in the room, a grid was used and velocities were calculated in each node. 

If more flow elements were present in the room, each flow was calculated individually, not 
taking into consideration the effect of the other flows in the room. The velocities in each node 
were compared and the highest used to estimate the draught risk. In each node, the number of 
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flow elements was counted, if the velocities were above a certain threshold limit. This was 
used as a measure of the uncertainty of the calculations. 

Presentation of the results 
For each time step, the results can be visualised as a plot on the floor plan. At each node on 
the floor, the maximum velocity was found in the column from the floor to the top of the 
occupied zone; the principle is shown in Figure 3. Depending on the maximum velocity, the 
draught risk in each area was ranked as no (white), low (green), medium (yellow) or high 
(red). 

The same was done for the number of flow elements meeting where the maximum number of 
flow elements in a node was shown on a floor plot. The more flows that meet, the more 
uncertain both the calculated risk of draught and the areas in the room, where the flows causes 
risk of draught. 

For longer periods, the results were summed showing the draught risk index and number of 
meeting flow elements as percentages of the floor area. These plots can be used to point out 
periods of interest.  

Example: Office with natural ventilation 
An office with natural ventilation was modelled in the building energy simulation tool BSim 
(12) using a Danish weather datafile. The room is shown in Figure 4 together with a brief 
description.  

Figure 3 Draught risk is estimated in the 
nodes of a grid structure and the highest 
value in each column is plotted on the floor 
plan. 

 

 
 
Figure 4 The room as simulated in BSim. Inside dimensions of 
room: height 3 m, length 8 m, width 5 m. There are two 
openable windows, each with a controlled opening area at the 
top of up to 0.33 m2. The end wall is fully glassed. 

 
From BSim, data were extracted for the draught-risk index tool. These were: indoor and 
outdoor air temperatures, interior window surface temperatures, airflow velocities through the 
window openings and opening area of the windows, all extracted for each time step. For the 
openanble windows Ka was set to 5 (Equations 3, 5, 6) corresponding to a poor inlet device 
for mixing ventilation. Ksa was set to 1.5 (Equation 6), which corresponds to heat release in 
the floor area. The height of the occupied zone is set to 1.8 m. 
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For an hour in May the following parameters were found by BSim: tin = 21.4°C, tout = 11.8°C, 
u0 = 0.28 m/s, a0 = 0.073 m2, twindow = 19.7°C. 

The velocity distribution generated by each of the openable windows was calculated by the 
flow element of a 3D wall jet. In Figure 5 velocities in a vertical cross-section through a 
window are shown together with the maximum velocity in the occupied zone projected onto 
the floor plane. Velocities below 0.05 m/s are plotted with white colour (no risk), velocities of 
0.05 – 0.1 m/s are shown in green (low risk), velocities of 0.1 – 0.2 m/s are shown in yellow 
(medium risk) and velocities above 0.2 m/s are shown in red (high risk). The flow from the 
other openable window is identical. 
 

     

Figure 5 The left figure shows the velocity distribution calculated in the central plane of one of the openable 
windows. The flow enters in the top corner of the room and attaches to the ceiling for approximately 2 meters 
before it drops into the occupied zone. The middle figure shows the room seen from above with a marking of 
maximum velocities in the occupied zone of the flow element from one of the openable windows. The right figure 
shows the velocity distribution in the room created by down draught from the glassed wall, projected down onto 
the floor plan. 
 
The incoming airflows from the windows create velocities in the occupied zone resulting in 
medium risk of draught in two small areas of the room and low risk in areas that are slightly 
larger. 

In Figure 5 on the right, the draught risk created by the cold glassed wall is shown. The 
glassed wall creates a down draught due to temperature difference, and the flow continues at 
floor level, with the highest velocities closest to the wall. 

 

                     

Figure 6 The left shows the maximum velocities in the occupied zone from all of the three flow elements, 
projected down onto the floor plan. The right shows the number of flow elements meeting in each area. 
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The results for all three flows were given in one plot, Figure 6 left. This plot shows the 
maximum risk of draught in each area, as calculated by flow elements one at a time. There is 
a low risk in most of the room and a medium risk close to the glassed wall and in two areas 
inside the room caused by airflows from the windows. 

The estimated uncertainty of the flow element calculations was evaluated by counting the 
number of velocities above a threshhold of 0.05 m/s in each node, and for each column the 
maximum number is projected down onto the floor, Figure 6 right. 

In the two small areas of the room, shown in yellow in the right plot of Figure 6, both the 
openable windows and the glassed wall generates risk of draught in the same nodes. This is 
because the flow from the windows reaches the floor in these areas. Actually the areas could 
be bigger, as the tool at the moment does not handle how the flow from the windows 
continues after it reaches the floor. 

As a summary of the draught risk over a longer period, the areas of the risk intervals (Figure 6 
left) were found for each time step and can be shown, e.g. over a week in May as seen in 
Figure 7. The same is done for the uncertainties as seen in the right part of Figure 7. 
 

 
Figure 7 Summaryof the draught risk over a longer period of the velocity distribution (left) and meeting flow 
elements (right) in the room. The room areas divided into risk intervals in each time step, here one hour. 
 
During this week in May, most of the time there was a low risk of draught in about 90% of 
the room area and medium risk in the remaining area of the simulated room. Only in a short 
period does more flow elements meet. 

Discussion and conclusion 
The developed tool uses inputs generated by building energy simulation software to give an 
overview of how often and where there is a risk of draught in a room. The tool is simple in the 
sense that it handles one flow element at a time and when flow elements meet, and the one 
generating the highest velocity is used to estimate the draught risk.  
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Flow elements are developed for simple geometries and when using them on more complex 
inlets and room geometries, the calculated velocities and flow patterns will only be estimates, 
even with just one element present. If flow elements are oppositely directed or have co-flow, 
there is no description of what occurs and the uncertainty is therefore higher. In the tool, this 
is handled by plotting the number of meeting flow elements, so that the user can realise that 
the calculations are uncertain. The idea of the tool is not to make highly precise estimates for 
any time step, but to give an overview of when and where draught may be a problem. 

From the plots produced by the tool, it should be possible to conclude one of three: (Green) 
There is a low risk of draught and the uncertainty is low – the design is acceptable, (Red) 
There is a high risk of draught – the design should be changed, or (Yellow) There is a risk of 
draught or the uncertainty is high – either change the design or make further investigation e.g. 
by CFD.  

Further work needs to be put into the tool to cover more flow elements and for calculating the 
parts of the flow market with dashed lines in Figure 2. 
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a  b  s  t r  a  c t

Thermal  radiation within buildings  is  a significant  component of  thermal  comfort.  Typically the  methods

applied  for  calculating  view factors between  a  person  and its building  surfaces  requires  great  compu-

tational time. This research  developed a view factor  calculation method suitable  for building  energy

simulations. The  method  calculates view factors  by numerical  integration  of  projected area factor. Over

time  the  projected  area  factor  of  a  person  has  been  simplified  by  geometrical shapes.  These  shapes  were

compared with  more complex equations on precision  and  calculation time. The  same  was  done  for the

resulting view  factors,  where the  results  were  compared  with view  factors found by  ray  tracing. While

geometrical simplifications  of the human body  gave  the  fastest  calculations, the complex equations gave

the most accurate  results.  Non-rectangular  surfaces and  obstacles  were treated  by  comparing  intersection

points  with  the edges  of  the  surface, making  the  method applicable  to  rooms  with  complex geometry.

The method  for calculating  view factors  is  robust  and  applicable  to  building  energy simulation  tools. Cal-

culation  time can  be long depending  on  the complexity  of  geometry,  grid-size and  the  choice  of  method

for the  projected  area factor,  but view  factor  calculations  are  done  only  once for a  whole  year  simulation.

© 2015  Elsevier  B.V.  All rights  reserved.

1. Introduction

Thermal radiation accounts for a substantial part of thermal

comfort, and knowledge on radiation is therefore vital when sim-

ulating thermal comfort in buildings. To comply with legislation,

architects and engineers work to optimise the building design in

order to obtain lower energy consumption. Thermal comfort is

often ensured by constraining variations in operative temperature

in the energy optimisation process; but better measures would be

predicted mean vote, PMV, or predicted percentage dissatisfied,

PPD, and percentage dissatisfied, PD, calculated in a grid, to cover

differences in the room. The overall goal is to be able to optimise

the thermal comfort of the occupants in parallel with the build-

ings’ energy consumption and  the major objective is to describe a

method for calculating view factors between persons and surfaces

in a room for use in calculations of mean radiant temperature and

radiant asymmetry.

∗ Corresponding author. Tel.: +45 23  60 55 67.

E-mail address: mhv@sbi.aau.dk (M.H. Vorre).

By improving the calculation of thermal comfort in building

energy simulation programmes, it  is possible to see the con-

sequences on the thermal comfort when changing the building

design, not just as an average in a room but on a number of different

points, taking more aspects into consideration than the operative

temperature. It  is especially important in buildings with a complex

geometry, where mean radiant temperature and  radiant asym-

metry varies in the room and an area-weighted mean of surface

temperatures is far from accurate.

Global thermal comfort is calculated as the energy balance of

the whole body, affected by  6 parameters: air temperature, mean

radiant temperature, air velocity, relative humidity, clothing level

and activity level  [1].  Local thermal discomfort can be  caused by

draught, temperature gradients, asymmetric thermal radiation and

cool/warm floors [2,3].

Previous work by  the authors describe ways to improve the sim-

ulation of clothing level [4] and air velocity and draught risk [5] for

use in building energy simulation tools.

The objective of this  paper was to present a  methodology for

calculating thermal radiant impact on  a person for better simula-

tion of thermal comfort in building energy simulation tools. The

method calculates view factors by integration of  the projected area

http://dx.doi.org/10.1016/j.enbuild.2015.05.005

0378-7788/© 2015 Elsevier B.V. All  rights reserved.
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Fig. 1. To the left the projected area factor illustrated by the part of  the body illuminated by a single light bulb. To the right the view factor to a  wall illustrated by  the part

of  the body illuminated by a  wall of light bulbs.

factor over the surfaces and can be used for any plane surface, tak-

ing account of obstructions in the room. The  method also applies

for view factors for calculating radiant asymmetry. The same basic

method is used for calculations between surfaces and between sur-

faces and a person.

For view factors involving a person, different methods and

simplifications for calculating the projected area factor are com-

pared, and the calculated view factors are compared with other

methods. The comparison is made on  both results and  calculation

time.

2. Theory

For the calculation of thermal comfort by  using PMV  or PPD and

PD caused by radiant asymmetry, knowledge of the mean radiant

temperature and radiant asymmetry are needed [1,3]. Mean radi-

ant temperature is defined as  that uniform temperature of a black

enclosure which would result in the same heat loss by  radiation

as the actual enclosure under study. The definition covers both

short wave radiation from the sun or a high-intensity radiant heater

and long-wave radiation by emission from surfaces. This paper is

focused on the latter while the impact on thermal comfort from

short-wave radiation is treated by  e.g. Karlsen [6]. Radiant asymme-

try is defined as the difference in mean radiant temperature for each

side of a small horizontal or vertical plate at the person’s position

in the room [7].

For comparing scenarios, the mean radiant temperature is an

expression that is easier to relate to than a number of different

temperatures of the surfaces.

The mean radiant temperature at a specific location is found

by calculating the heat transfer through radiation in the actual

enclosure. The radiant energy exchange between a person and a

surrounding surface is  calculated as between any two objects:

q1→2 = ε · �s · F1→2 · A1 ·  (T4
1 − T4

2 ) = −q2→1 (1)

where q1→2 is the heat flow by  radiation from object 1 to object 2 in

W, ε is the multiple of the emissivities of the objects, �s = 5.67 ·  10−8

W/m2 K4 is the Stefan–Boltzmann constant, F1→2 is the radiation

view factor or angle factor from object 1 to object 2 (how big an

area does object 2 cover compared with the whole area that  object

1 radiates to), A1 is the effective radiation area of object 1 in m2, T1

is the surface temperature of object 1 in K, T2 is the surface tem-

perature of object 2 in K, q2→1 is the heat flow by  radiation from

object 2 to object 1 in  W.

Eq. (1) is only valid if  reflection can be disregarded; which is only

a reasonable assumption when the emission of  the surfaces is close

to the emission of a black body, where all  radiation is absorbed and

none is transmitted nor reflected. This is the case for many building

materials and  items of clothing, though glass is an exception as  its

emissivity can be  very low, also for  long-wave radiation.

To calculate the radiant exchange to a person, we need to know

the surface temperature of the person and  the surrounding sur-

faces, their areas, emissivities and  the view factors between them.

The highest view factor is found when a surface surrounds a

person, as the view factor of the surface is then equal to 1,  as  is the

case for a sphere. The view factor is calculated from the projected

area factor, and the projected area factor describes how much of an

object is illuminated from a given point, as illustrated by  the single

light bulb in Fig. 1.

The view factor describes how much of the object is illuminated

from a whole wall of light bulbs and can be found by  integrating

the projected area factor for  each light bulb over the entire wall as

illustrated to the right in Fig. 1.

For a person in a  room, the sum of view factors to all surfaces

equals 1.

The projected area of  a person can be illustrated by  his silhouette

and depends on the view point to the person. The view point is

described by the azimuth angle, ˛, and the altitude, ˇ, as  illustrated

in Fig. 2.

The effective radiation area of a person is the area that emits and

receives radiation from the surroundings. This area is smaller than

the total skin area of the body, as  parts of the body do not exchange

radiation with the surroundings, e.g. between the toes or under the

arms.

2.1. A historical view of  view factors involving persons

Interest in the view factors between a person and  surrounding

surfaces arose in the late 1960s with HVAC systems and Fanger’s

studies on thermal comfort [1]. Before then, studies on  thermal

radiation to persons were mostly done to calculate the impact on

persons from direct solar radiation, because the military needed

knowledge about the effect of the sun  on soldiers [8].  The first

studies in the field were therefore not  with the aim of describing

view factors but merely the projected area factor of a person from

different angles.

In  the 1930s, James D. Hardy and Eugene F.  DuBois used a wrap-

ping method to determine the effective radiation area of a  person. A

person was wrapped in paper like an Egyptian mummy, and the sur-

face area was  measured by  rubber-coating the paper, a technique

similar to the one used to measure the total area of the human

skin also known as the DuBois area. The effective radiation area

was found to be  78.3% and 78.4% of the total skin area for the two

persons they measured [9].
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Fig. 2. The azimuth angle  ̨ and the altitude ˇ.

In 1952, Guibert and Taylor used photographs to determine pro-

jected areas and the total effective radiation area. Photos were

taken in a half sphere, with the person in a standing and  a  sit-

ting position. The pictures were taken from a distance of 12 m and

treated as though taken from an infinite distance, as would be the

case with radiation from the sun  [10].

For calculating the projected area factor, a  sphere represented

a seated person and a cylinder represented a standing person. The

relation between height and radius of the cylinder was  found from

observations [11].

As the sun was the challenge, the sun was also used in the

research, and the solar angles and  shadows cast were measured

for a standing person facing the sun and  with the person turned

sideways to the sun [12].

In 1966, the photographic method was used by  Underwood and

Ward on standing men  and women. The pictures were taken from

different azimuth and altitude, though with irregular steps due

to their test fixture. The photos of 25 men  and 25 women  were

taken from a distance of 4.57 m.  Underwood and Ward suggested

an oval cylinder to represent a standing person in the calculations

of projected area factors [13].

The photographic method and test setup of Underwood and

Ward were adopted by Fanger, who in his doctoral thesis described

experiments involving 10 male and 10 female test persons from

northern Europe. All subjects were photographed from 78 differ-

ent angles with steps of 15 degrees. Photos were taken for both a

standing and a seated position. Fanger presented his results for the

projected area factor as diagrams in order to get closer to  the actual

geometry of the human body. He supplemented with diagrams for

the view factor between person and surfaces in an orthogonal room

[1,14].

Discomfort caused by asymmetric thermal radiation was inves-

tigated in a climate chamber where the surface temperatures could

be regulated independently for  the two half-parts of the room, for

a suspended ceiling or other part surfaces. In the experiments view

factors between surfaces and  persons were found by  use of Fanger’s

diagrams and in 1980 the term radiant temperature asymmetry

is introduced. Radiant temperature asymmetry is defined as  the

difference in plane radiant temperature for a small plane element

and is probably introduced in order to be able to make a direct

measurement [2,3,7].

Diagrams for  reading view factors to inclined surfaces were

made in 1988 by  use of cubic spline on Fanger’s results for the

projected area factor [15].

In 1990, Horikoshi et al.  [16] made similar experiments as

Fanger, but using an orthographic projection camera, where the

parts of the person close to the camera are bigger than those fur-

ther from the camera. This is in contrast to the earlier work, where

an effort was  put into measuring the projected area as seen from

infinity. As surfaces and especially the floor are not infinitely far

away, they argue  that  this method is more accurate especially when

considering the heat exchange to floors with heating and in rela-

tively small rooms. The results of Horikoshi et al.  are presented as

diagrams for  reading view factors.

In the beginning of the 1990s, the computer era affected the

world of thermal radiation calculation and Fanger’s diagrams for

reading both the projected area factor and the view factor in ortho-

gonal rooms are put  into algorithms. Just like with the principle in

Fanger’s diagrams for view factors, it is still necessary to divide all

surfaces according to the centre of the person and categorise the

divisions in front or behind, above or below the centre, on the side,

vertical or horizontal [17,18].

In 2000, algorithms for view factors to inclined surfaces were

added [19].

In the beginning of the new millennium, a study similar to

Fanger’s was  made in Italy on Italian subjects. The study involved

more subjects and smaller angle steps, since digital photos and

computer software measure the projected area of the persons in

the photos much quicker than the manual measures taken 40 years

earlier. The results showed fair agreements with the projected area

factors for standing persons found by  Fanger, but  for seated persons

the differences where significant [20].

Apart from these methods, CFD programmes and computer

games use ray tracing for calculating radiation very precisely. Ray

tracing has a longer calculation time and demands more input than

the other methods.

This paper suggests using numerical integration for calculation

of  view factors. The  method was chosen because it  is applicable for

both person-to-surface calculations and surface-to-surface calcu-

lations. The method implies knowledge of the projected area factor

of a person, or surface, as  a function of the angle that  the person is

viewed from.

The method can also be used to compute radiant temperature

asymmetry, by  calculating view factors for each side of a small hor-

izontal and a small vertical plate. The correlations between radiant

asymmetry and thermal comfort are described for the small plates,

though during the studies the actual view factors to the heated or

cooled surfaces were also calculated. By calculating view factors for

a person, while keeping track of azimuth and altitude angles, it  is

possible to also compute thermal radiant asymmetry for an actual

person, and the results were compared to the results using small

plates.

2.2. Projected area factor of  a person–comparison of  calculation

methods

Over time the projected area of a person was simplified to

geometrical shapes for easier use in calculations, e.g. spheres and

cylinders. In this study, numerical integration is suggested for cal-

culating view factors, and it is therefore interesting to compare the

geometrical simplifications for calculation of  the projected area fac-

tor to more complex algorithms on both precision and calculation

time.

Comparisons were made for both standing and  seated per-

sons. The projected area factor of a seated person was calculated
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Fig. 3. Projected area factors of  a  standing person, calculated by using a cylinder as suggested by Taylor [11] and optimised according to  Fanger’s results (thick line) compared

with  the results of Fanger’s measurements indicated by the thin line  with dots.

assuming a sphere, a cube and a box. A  standing person was

simplified to a cylinder and  an oval cylinder. As more com-

plex equations, the results by  Rizzo et al. [17] were used. Their

equations are derived from original data provided by  Fanger. Unfor-

tunately, it was not possible to obtain access to the data  found

in the Italian experiments [20], and  the calculated values are

therefore only compared with the data points from Fanger’s exper-

iments.

Only the results for standing persons are shown here. The

equations for seated persons are used in the later comparison of

calculated view factors.

The simplest suggestion of a standing person is a cylinder. In

Fig. 3, the cylinder is compared with the results by Fanger. On the

left, the cylinder is 1.65 m high and has a radius of 0.23 m as  found

by Taylor [11] and on the right, the cylinder was  optimised by  the

least square error compared with Fanger’s data, height 1.11 m and

radius 0.26 m.

A cylinder is axisymmetric and  the projected area does  therefore

not vary with the azimuth angle; on the other hand it  does have

quite an identical behaviour for the altitude.

An oval cylinder of  1.5 m in height, a large radius of 0.29 m and

a small radius of 0.19 m was suggested by Underwood and  Ward

[13]. In Fig. 4, the projected area factor of the original oval cylinder

is compared with data points from Fanger on the left and on the

right an optimised cylinder is compared, height 1.1 m,  large radius

0.32 m and small radius 0.21 m.

The  oval cylinder has many similarities with Fanger’s results and

depicts both the variations in azimuth and altitude.

The last method for calculating the projected area factor in the

comparison is the algorithm derived by  Rizzo et al.  [17]  on  the basis

of Fanger’s results. The algorithm is a double variable polynomial

where the azimuth angle is of degree 4 and altitude is of degree 3.

The algorithm is only valid for azimuth angles between 0◦ and 180◦

and  for the altitude between 0◦ and 90◦. In  Fig. 5  the algorithm is

compared to the results by  Fanger.

Of the three calculation methods (cylinder, oval cylinder and

algorithm) the best fit is found by using the algorithm derived from

Fanger’s data, as  shown in Fig. 5, though the algorithm shows less

similarities at the front and back of the person (azimuth angle close

to 0◦ and  180◦) especially at low altitudes. The differences close to

the limits of the valid range is due to the nature of the developed

polynomial, as  can be seen when plotting values outside the valid

ranges, shown on the right side in Fig. 5.

The calculation time is the cost of achieving the higher preci-

sion by using the algorithm. While the oval cylinder is only a  little

slower than the simple cylinder, the algorithm’s calculation time

is approximately 4  times that of the cylinders. For the calculation

of view factors where a high number of calculations are needed

when using the integration method. The  calculation time may  end

up being an issue, though for  building energy simulation tools the

calculation of angle factors are only done once for every position of

the person, not at every time step.

Fig. 4. Projected area factors of a  standing person, calculated by  using an oval cylinder as  suggested by Underwood and Ward [13]  and an optimised oval  cylinder (thick line)

compared  with the results of  Fanger’s measurements indicated by the thin line with dots.
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Fig. 5. Comparison of the projected area factor for a standing person as  measured by  Fanger (thin line with dots)  and calculated using of the algorithm found by  Rizzo et  al.

[17] (thick line). To the right is shown the behaviour of the algorithm outside the valid range.

3. From projected area factor to view factor for a person

In this section, a methodology is described for calculating the

view factor between a person and  a plane surface of any geometry,

the method can also be used between two surfaces and when other

surfaces obstruct the radiation.

A person receives and emits heat by radiation. If  a person is

placed in a sphere, all radiation from that person will hit the sphere,

while not all of the radiation from the sphere will hit the person, as

most of it will instead hit the sphere itself.

If the radiation is diffuse, then:

APerson · FPerson–Sphere = ASphere · FSphere–Person (2)

where Aperson is the effective radiation area of a person in m2,

FPerson–Sphere is the view factor from the person to the sphere (how

much of the radiation leaving the person reaches the sphere),

ASphere = 4 · � · r2 is the surface area of the sphere in m2,  FSphere–Person

is the view factor from the sphere to the person (how much of the

radiation leaving the sphere reaches the person), r is the radius of

the sphere in m.

As all radiation leaving the persons effective radiation area

reaches the sphere, the view factor from the person to the sphere

is known: FPerson–Sphere =  1, and  Eq. (2) can then be written as:

APerson = ASphere · FSphere–Person (3)

The view factor from the sphere to  the person cannot be calcu-

lated directly. It has to be integrated over the surface of the sphere.

If looking at the radiation from the small area dAsphere to the

person, then dAsphere radiates diffusely in a sphere. This radiation-

sphere reaches the person at a distance equivalent to the radius, r,

of the sphere, as illustrated in Fig. 6. The view factor from dAsphere to

the person is therefore the projected area of the person, Aprojected,

as seen from dAsphere compared with the total area of the radiation-

sphere with the radius r cut  off by the sphere surrounding the

person, which also has the radius r.  The  surface area of a sphere

cut off by another sphere with equal radius is ¼ of the total surface

area of the sphere. The view factor is then given by:

FdAsphere–Person = Aprojected

(1/4) · 4 · � ·  r2
= Aprojected

� ·  r2
(4)

where FdASphere–Person is the view factor from the small area dAsphere

to the person, Aprojected is the person’s projected area as  seen from

dAsphere in m2, r is the radius of the sphere in m.

Fig. 6. A person in the middle of a sphere. The small area dAsphere radiates diffusely

in  a sphere that is cut off  by  the sphere surrounding the person.

Most surfaces surrounding us are not spheres. If instead of look-

ing at a sphere, we  look at a plane rectangular surface with the area

A, as  shown in Fig. 7, then this area can be divided into areas so

small that it is reasonable to assume that the whole area dA has the

same distance to the person, and  it is possible to calculate it  like for

the sphere.

For the small area dA,  Eq. (2) can be written as:

Aeff · dFPerson–dA = dA · FdA–Person (5)

Because the person sees the small area dA under the angle � ,  the

area that  the person sees is dA ·  cos(�), which means that the view

factor from the small area dA  to the person is

FdA–Person = Aprojected

�  · r2
· cos(�) (6)
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Fig. 7. Person seated beside a plane rectangular surface. The surface is divided into

small  areas, dA, for which the projected areas of the person are calculated.

dFPerson–dA can then be calculated as:

dFPerson–dA = dA · FdA–Person

Aeff
= dA  ·  Aprojected

Aeff · �  ·  r2
· cos(�)

= Aprojected

Aeff
· 1

� ·  r2
· cos(�) ·  dA

= fprojected

� · r2
· cos(�) ·  dA  (7)

where fprojected is the projected area factor of the person, which

relates the projected area of a person to the effective radiation area

of the person. Like the projected area, it  depends on the azimuth

and altitude from where the person is viewed.

By integrating Eq. (7)  over  the surface, the view factor from the

surface to the person can be found:

FPerson–A = 1

�

∫
A

fprojected(˛, ˇ)

r2
· cos(�) ·  dA  (8)

where r is the radius of the sphere with the person in the centre

and reaching dA or simply the distance between the person and dA,

� is the angle between the line person–dA and the normal of the

surface,  ̨ is the azimuth angle measured from the persons sight

direction to dA,   ̌ is the altitude to dA from the person’s centre,

fprojected is the projected area factor.

To calculate the view factor to the entire surface, the integral in

(8) must be solved, which cannot be done analytically. Instead it  is

solved numerically:

FPerson–A = 1

�

∫
A

fprojected(˛, ˇ)

r2
· cos(�) ·  dA

≈ 1

�

∑
A

· fprojected(˛, ˇ)

r2
·  cos(�) ·  �A

= 1

�

∑
y

(∑
x

· fprojected(˛, ˇ)

r2
· cos(�) · �x

)
· �y  (9)

The Simpson method is used for the numerical integration of  Eq.

(9) and the procedure is described in Appendix.

View factors for calculation of  radiant asymmetry are found by

setting the projected area factor to zero, when the azimuth angle is

to the left/right of the person or the altitude angle is above/below

zero.

Fig.  8. Example of a  non-rectangular surface with the vectors constituting the edges

of  the surface.

3.1.  Complex geometries

The described method of integration over the surface is only

applicable if the surface is rectangular. If it is not, the method should

be supplemented with extra calculations.

For a  non-rectangular surface, a rectangular surface is made that

includes the whole surface, as shown in Fig. 8. The  rectangular sur-

face is then divided by  a grid for the numerical integration and for

each node it is checked, whether or not it is a part of  the real surface.

The position of all nodes is compared with the edge vectors of

the real surface. If the node lays to the right of all edge vectors, it

is within the surface. If  the node lies to the left of  just one edge,

it is outside the real surface. The method is only valid for surfaces

where all corner angles are less than 180◦. If this is not the case, the

surface needs to be divided into smaller surfaces where all angles

are smaller than 180◦.

The process is quite slow, so to reduce calculation time  the check

for a node against edge vectors is stopped if the node is found to

lie to the left of an edge, as there is then no reason to check against

other edges. Furthermore, it  is seen that when going perpendic-

ularly through the rectangular grid, if one node is inside the real

surface and the next is outside, then all the following nodes in that

row or column will also be  outside.

If it is found that the node is outside the real surface, the pro-

jected area factor in Eq. (9)  of the subsurface is set to zero, otherwise

the actual projected area factor is determined.

In the case of a room with one or more surfaces that in reality

have corner angles more than 180◦,  it  is important to realise that

the person can actually be positioned “behind” some of the surfaces

in the room. In Fig. 9,  the person has a view factor of zero to surface

d, because the person is positioned behind the surface.

3.2. Obstructions between surface and person

The method of comparing a point to the edges of the surface is

also used to determine whether other surfaces are obstructing the

view between a subsurface and the person.

When calculating view factors between the person and  surface

b in Fig. 9,  the vectors between the person and  each node on the

surface are found. For each vector, it  is checked whether the vector

is blocked by another surface. If  the intersection point of  the vector

on another surface is within the edges of  the other surface, then

the radiation is blocked, though only if the intersection point is

between the person and the node. In Fig. 9,  radiation from surface

b is partly blocked by both surface d  and surface e, but as  soon as it

is found that  the vector is blocked by  one surface, there is no  need

to check intersection points with any other surfaces.
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Fig. 9. L-shaped room seen from above with a  person. View factor between person

and  wall d equals zero. The view factor to wall c is also zero, as radiation between

the  surface and the person is blocked by surfaces d and e.

The vector between a node on surface b and  the person can inter-

sect with surface f, but the intersection point lies outside the range

of the vector and is therefore irrelevant.

This is potentially a very slow process because all surfaces have

to be checked, and consequently it  is possible to simply disregard

this step, if the room geometry yields that surfaces cannot block

one another e.g. all corner angles are smaller than 180◦.

Secondly, before the calculations of view factors are started, the

potentiel obstructing surfaces are found for each surface and  only

these surfaces are checked. In an L-shaped room as  shown in Fig. 9,

walls “d” and “e” are the only walls that can block radiation. The

rest of the walls will never block radiation between a person and  a

surface, regardless of where in the room the person is positioned.

3.3. View factors between surfaces

Surface temperatures in a room depend on the exchange of

thermal radiation between surfaces. Consequently, view factors

between surfaces are also necessary for improving the calculation

of the radiant part of an occupant’s thermal comfort. It  is chosen

not to take the obstruction by  persons into consideration.

Before the use of computers, diagrams were used to find view

factors between two surfaces for  a number of standard situations

and even though they were indeed useful, it  was also a puzzle when

the building under study did not fit into these standard geometries.

As radiant energy exchange is a challenge also in other industries,

several geometries can be handled by  use of geometric equations,

but for use in building energy simulation it is difficult to make a gen-

eral solution with the minimum of user interaction and knowledge

in the specific field.

Georg Walton tests different integration methods on both cal-

culation time and precision, and further describes the method of

integrating along the edges of the surfaces. His method integrates

over any surface with corner angles of less than 180◦. Obstructions

between surfaces are handled by  dividing the surfaces into smaller

parts based on shadow cast by the obstruction [21].

In this paper it is chosen to use the same integration method for

determination of view factors between surfaces as  used for deter-

mination of view factors to persons. Because of the high irregularity

of the human body, the method of integrating along the edges of

the surfaces is not applicable when persons are involved. In order to

determine the view factor between two surfaces, area integration

of both surfaces is necessary and  the Simpson method is therefore

used twice.

For geometries other than rectangular surfaces, an orthogonal

grid is still used and a check is made to determine whether a given

point is part of the actual surface. The same method is used when

other surfaces or objects obstructs parts of the radiation between

two surfaces.

For radiation between any two  objects the following interaction

applies:

F1→2 · A1 = F2→1 · A2 (10)

where F1→2 is the view factor from object 1  to object 2  (how much

of the radiation leaving object 1  that  reaches object 2), A1 is the area

of object 1, F2→1 is the view factor from object 2 to object 1, and

A2 is the area of object 2.  The view factor states how much of the

total radiation from one object that reaches the other object and is

therefore a factor between 0 and 1.

For two surfaces the view factor from surface 1 to surface 2  can

be calculated as:

F1→2 = 1

A1 · �· ·
∫

A1

∫
A2

cos �1 · cos �2

r2
· dA1 · dA2 (11)

where A1 is the area of surface 1, A2 is the area of surface 2, r is the

distance between dA1 and dA2, �1 is the angle between the normal

to surface 1 and the line between dA1 and dA2,  and �2 is the angle

between the normal of  to surface 2 and the line between dA2 and

dA1.

The integral is solved numerically:

F1→2 = 1

A1 · �
·
∫

A1

∫
A2

cos �1 · cos �2

d2
· dA2 · dA1

≈ 1

A1 · �
·
∑

A1

⎛
⎝∑

A2

cos �1 ·  cos �2

d2
·  �A2

⎞
⎠ · �A1 (12)

The numerical solution is found by  using the Simpson method

twice and is further described in Appendix.

4. Calculation example and comparison of methods

The described method was  used for the calculation of view fac-

tors between a person and the surrounding surfaces in a room by

using four different assumptions for calculating the projected area

factor. The results were compared with the algorithm for  direct

calculation of view factors by Cannistraro et al.  [18] and results by

using ray tracing in the CFD software ANSYS CFX.

The calculations were  made for a  rectangular room with a

seated person. The room geometry was  chosen in order to be able

to calculate view factors by the algorithm of Cannistraro et al. and

the seated position chosen in order to compare results with a ray

Fig. 10. Sketch of the room used in  the example with colour code for surfaces used

in  the diagrams.
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Fig. 11.  View factors calculated by  using six different methods.

tracing model of a person modelled by  a 3D laser scan of a thermal

mannequin.

The room is 3.60 m long, 2.76 m wide and 2.75 m high. The  per-

son is seated 1.2 m from the end wall and  1.38 m from the side walls,

facing a side wall (Fig. 10).

In the CFD software, the view factors were found by giving all

surfaces in the enclosure the same temperature and  applying a

higher temperature to the person. The amount of heat received by

each surface was then used to calculate the view factors.

For each surface the view factor was found by numerical inte-

gration using four different methods for  the calculation of the

projected area factor of a seated person: the algorithm by Rizzo

et al. [17] based on Fanger’s results, a sphere, a  cube and a box. The

dimensions of the box were optimised for the best  fit with Fanger’s

data.

The view factors were adjusted to sum up to 1 by dividing each

calculated view factor with the sum of the view factors for  the

whole room. The calculated view factors are shown in Fig. 11 and

when comparing to ray tracing, the difference is shown in Fig. 12.

The view factors in the calculation methods based on Fanger’s

work were the ones getting closest to the view factors found by  ray

tracing. The two simplest models, the cube and the sphere, differ the

most. Complete agreement is probably not possible as the precise

position of the seated person in the CFD model and  the subjects

photographed by Fanger could very well be different.

Another significant difference between the methods is the cal-

culation time. The calculations were made in MatLab with steps of

0.01 m for the integration methods. The  longest calculation time

was for the integration of the algorithm for the projected area fac-

tor derived by Rizzo from Fanger’s data [17]. Only 50%  of  that  time

was used if assuming a geometrical shape, and  just 1% was used

for the method of direct calculation of view factors as developed by

Cannistraro from Fanger’s data  for view factors [18].

But the example given was  a  very  simple room. There were no

inclined surfaces, the person was  looking directly at  a surface and

everything was  orthogonal. All surfaces had points correlated to

the centre of the person, so  no special calculations were needed.

4.1. Grid size

When using a numerical integration method, the chosen grid

size influences both the result and the calculation time. In the above

example, a grid  spacing of 0.01 m was  used. If instead a grid space of

0.1 m had been used, the calculation time would be reduced from

0.64 s  to 0.02 s when calculating the projected area factor for  the

room shown in Fig. 10 and calculating the projected area factor

by the method of Rizzo et al. [17].  In Table 1,  the results of using

a different grid sizes are shown together with the time used for

calculating view factors of all  six surfaces.

For the room in shown in Fig. 10 it is seen that calculation time

increases rapidly when decreasing grid  size and that only little dif-

ference is found in the calculated view factors, when the grid size

gets minor than 0.05 m.

By  accepting slightly more uncertainty in the results, it  is pos-

sible to greatly reduce the calculation time, though it is important

to bear in mind that the calculation of  view factors only need to be

done only once for  a building simulation for  a whole year.

4.2. Effect of calculation method on mean radiant temperature

and PMV

Mean radiant temperature, PMV  and  PPD are affected by

thermal radiation and are the measures used for  assessing global

thermal comfort. The  investigation of methods for calculation

of the projected area factor and proposal of a method for  view

factor calculation had the purpose of improving the accuracy in
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Fig. 12. Difference between view factors calculated by ray tracing and five other methods.

Table  1
Calculated view factors for different grid sizes. All view factors are calculated using the method by  Rizzo et al. for calculating projected area factor. The right column shows

the  calculation time for the room in  Fig. 10.

Gridsize in m View factors for surfaces Calculation time in seconds

Left Front Right Back Floor Ceiling

1.000 0.074 0.191  0.173 0.164  0.307 0.091 0.00

0.500 0.075 0.187 0.175 0.159  0.314 0.091 0.01

0.100  0.076 0.188  0.175 0.159  0.311 0.092 0.02

0.050  0.076 0.186  0.175 0.159  0.311 0.092 0.05

0.010  0.076 0.186  0.175 0.159  0.311 0.092 0.64

0.005  0.076 0.186  0.175 0.159  0.311 0.092 3.24

0.001  0.075 0.185  0.174 0.158  0.309 0.091 93.40

the calculation of mean radiant temperature and PMV, and it

is therefore interesting to see the influence that  the calculation

methods has on these values.

If assuming the same emissivity for all  surfaces and that reflec-

tions can be disregarded, then the mean radiant temperature can

be calculated using Eq. (13):

T4
mr =

n∑
i=0

(Fperson→surface n · T4
surface n) (13)

In the room shown in Fig. 10 all surfaces are set to  have the

same temperature of 22 ◦C, except for  the wall in front of the person

which is assumed to be a poorly insulated window with a surface

temperature of 5 ◦C. Air temperature is set to 22 ◦C, air velocity to

0.01 m/s, clothing level to 1 clo, activity level to 1 met  and rela-

tive humidity to 50%. The difference in mean radiant temperature

(MRT), PMV and PPD by using the different methods are calculated

and results are shown in Table 2.

In this example, integration over Rizzo is the most accurate, but

it will vary depending on the error of view factors on  the different

surfaces. Depending on the calculation method, the mean radiant

temperature is calculated to be as low as 18.87 ◦C  and up to 19.47 ◦C,

giving a variation in PMV  ranging from −0.68 to −0.60 and  PPD

ranging from 14.6% to 12.7%.

If  instead the wall to the right had been the window, see Fig. 10,

the two simplest methods (sphere and cube) would have been the

most accurate. However, the objective was to illustrate the effect

on the mean radiant temperature felt by the person.

4.3. Radiant asymmetry

Radiant asymmetry can cause discomfort, both for vertical and

horizontal asymmetry. The relation between the percentage of

people feeling discomfort and  radiant asymmetry apply for  the

difference in thermal radiation side-to-side for  a horizontal or a

vertical plate [22], though Fanger’s diagrams were actually used in

especially the first studies [2].

With the method described earlier in this article it  is possible

to calculate the radiant asymmetry for  both plates and a person

represented by the algorithm of Rizzo et al.  by  keeping track on
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Table  2
Results for mean radiant temperature, PMV  and PPD when using different methods for calculating view factors.

Ray tracing Cannistraro Rizzo Sphere Cube Box

MRT  (◦C) 19.01 19.08 19.04  19.46 19.47 18.87

PMV  −0.66 −0.65 −0.66 −0.61 −0.60 −0.68

PPD  14.1  13.9 14.0  12.7 12.7 14.6

when the azimuth angle is to the right or left of the person and

when the altitude angle is above or below the persons centre.

For the room in Fig. 10 the surfaces has  one at a time been

assumed to be a window with a surface temperature of 5 ◦C  while

the rest where kept at 22 ◦C. The results for radiant asymmetry at

the point of the person are shown in Table 3  together with the

calculated percentage of dissatisfied.

Radiant asymmetry calculated for a plate is higher than if calcu-

lating using more realistic human model. The difference between

the methods is highest when the cold surface is parallel to the plate.

Using the more realistic human model in calculations of mean

radiant temperatur will result in an underestimation of percentage

dissatisfied.

5. Discussion

The described method for  calculation of  view factors is a robust

method and can be used to explore several positions and  orienta-

tions of the person in a room. The  calculation time is sensitive to

the choice of method for determining the projected area factor and

the grid size. Both also have an effect on the accuracy of  the calcu-

lated view factors. In the example, the calculation time varied by a

factor 2 depending on method, while the calculated mean radiant

temperature varied by 0.6 ◦C.

The objective of the paper was to develop a method for  improv-

ing calculation of the radiant impact on  occupants in building

energy simulation tools. As  the calculation of view factors only has

to be performed once for a given room geometry, and not at every

time step in a building simulation for  a whole year, the higher calcu-

lation time can be justified in order to obtain more accurate results

and the method is therefore clearly applicable for building energy

simulation tools also in rooms with a complex geometry.

View factors involving persons are sensitive to the method for

calculating the projected area factor of the person, both in calcula-

tion time and precision. Though even with the most complex model,

it is still just a model, not taking into consideration the chair and

the table where a person is normally seated. And it is relevant to

consider whether the error when using a simplification of a person

as a sphere compared with the complex model is actually larger

than the difference between the complex model and reality, where

e.g. the chair blocks a substantial part of the radiation to and from

the person.

The calculation of radiant asymmetry using the algorithm by

Rizzo, resulted in an underestimation of percentage dissatisfied, but

the results come closer to how surfaces affect a real person. Further

comparison between radiation asymmetry calculated for plates and

the algorithm are suggested e.g. using the results of the original

studies, in order to describe the relation between percentage dis-

satisfied and the more realistic radiant asymmetry. The current

relation simplifies the problem to what is easily measured, whereas

computers and  thermal mannequins make it  possible to improve

both measurements and calculations to better reflect reality.

Table 3
Radiant asymmetry calculated by  the proposed method, using a plate and the algorithm for projected area factor by Rizzo et al, and the percentage dissatisfied caused by

radiant  asymmetry.

Vertical plate Horizontal plate Rizzo

�Tradiant (◦C) PD  (%) �Tradiant (◦C) PD (%) �Tradiant (◦C) PD (%)

Left/right

Cold wall in front 1.2 0.2 0.9  0.2

Cold  wall to the right 8.8 2.7 5.6 0.9

Cold  wall to the left 4.2 0.6 2.4 0.3

Up/down

Cold  wall in front −2.3 0.0 −2.8 0.0

Cold  floor 14.7 37.6 10.2  20.2

Cold  ceiling −6.1 0.1  −2.9 0.0
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6. Conclusion

A method for calculating view factors between persons and  sur-

faces by using Simpson integration was described and compared

with ray tracing. Depending on the chosen way of calculating the

projected area factor of the person, the results got close to the ones

found by ray tracing, though with a much lower calculation time

and a simpler setup for a user.

The method is applicable for  both simple and  complex rooms.
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Appendix.

This appendix describes the calculation of angles used for deter-

mining projected area factors in the calculations of view factors and

describes the basis in the Simpson method for  numerical integra-

tion together with a quick way to build up  the matrix used to weigh

the results.

A.1. Surface to persons

For the calculation of  the projected area factor, the angles ˛,  ˇ
and � , in Fig. 7, must be known for each small area of the surface

as well as the distance, r,  between the person and the small area.

The normal vector of the surface, �n,  is known as well as the

position, P, and the orientation, �o,  of the person in the room:

�n =
[

xn

yn

zn

]
P =
[

xP

yP

zP

]
�o =
[

xo

yo

zo

]

For each small part of the surface, �A, we look at, the position

of it’s centre is known, and the vector, �r, from the person to �A  is

given by:

�r =
[

xP − x�A

yP − y�A

zP − z�A

]
=
[

xr

yr

zr

]

Then the angle, � , between the normal vector of the surface, �n,
and the vector, �r,  is:

cos(�) = �n · �r
|�n| · |�r| =

⎡
⎢⎣

xn

yn

zn

⎤
⎥⎦ ·

⎡
⎢⎣

xr

yr

zr

⎤
⎥⎦

√
x2

n + y2
n + z2

n ·
√

x2
r + y2

r +  z2
r

(14)

The azimuth angle, ˛, is found in the same way, using the per-

son’s orientaon, �o,  and the vector. �r, though only calculated in the

horizontal plane:

cos (˛) = → oxy · → rxy

|→ oxy| · |→ rxy| =

[
xo

yo

]
·
[

xr

yr

]
√

x2
o + y2

o ·
√

x2
r +  y2

r

(15)

The altitude, ˇ, is the angle between the vector, �d,  and the pro-

jection of the vector, �d, onto the horizontal plane:

cos(ˇ) = �r ·  → rxy

(|�r|  · |→ rxy|) =

⎡
⎢⎣

xr

yr

zr

⎤
⎥⎦ ·

⎡
⎢⎣

xr

yr

0

⎤
⎥⎦

√
x2

r + y2
r + z2

r ·
√

x2
r +  y2

r

(16)

The Simpson method is used to optimise the calculation time

when solving Eq. (9). The Simpson method combines the centre

method with the trapeze method, where the value of a small area

is calculated at the centre of  the area and as a mean of the values

in the corners. The method requires the number of small areas to

be an even number in both directions.

The principle can be written as:

∫
A

f (x, y) · dA =
∫ b

a

∫ d

c

f  (x, y) · dy · dx

≈

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

f (a, c) f  (a  + k, c) f  (a  + 2k, c) f  (b  −  2k, c) f  (b  −  k, c) f  (b,  c)

f (a, c +  h) f  (a  + k, c + h) f (a  + 2k, c + h) ·  · ·  f  (b − k, c +  h) f  (b,  c +  h)

f (a, c + 2h)  f  (a  + k, c + 2h) f  (a  + 2k, c +  2h)  f  (b,  c +  2h)
...

. . .
...

f (a,  d − 2h) f  (a + k, d  − 2h) f  (a + 2k, d − 2h) f  (b,  d  − 2h)

f (a, d − h) f (a  + k, d  − h) f  (a  + 2k, d − h) ·  · ·  f  (b  − k, d  − h) f  (b,  d  − h)

f (a, d) f  (a + k, d) f  (a + 2k, d) f  (b  − 2k, d) f  (b  −  k, d) f  (b,  d)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1  4  2

4 16 8

2 8  4

· ·  ·
2  4  1

8 16 4

4 8  2
...

. . .
...

2 8  4

4 16 8

1 4  2

· ·  ·
4  8  2

8 16 4

2 4  1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

· 1

9
·  k · h

where k is the grid  size in x-direction, h, is the grid size in the y-

direction.

The matrix weighting the results can be  made in 5 steps:

• Step 1:  Make a matrix of ones with N  rows  and M  columns cor-

responding to the division of the surface, both N  and M  has to be

even numbers.
• Step 2: Row 2 → (N − 1) is multiplied by  2
• Step 3: Column 2  → (M − 1) is multiplied by 2
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• Step 4: Row 2 → (N − 1) is multiplied by  2  in every 2nd row
• Step 5: Column 2 → (N − 1) is multiplied by  2  in every 2nd column

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

→

⎡
⎢⎢⎢⎢⎢⎢⎣

1  1  1  1  1  1  1

2 2  2  2  2  2  2

2 2  2  2  2  2  2

2 2  2  2  2  2  2

2 2  2  2  2  2  2

2 2  2  2  2  2  2

1 1  1  1  1  1  1

⎤
⎥⎥⎥⎥⎥⎥⎦

→

⎡
⎢⎢⎢⎢⎢⎢⎣

1 2 2 2 2  2  1

2 4 4 4 4  4  2

2 4 4 4 4  4  2

2 4 4 4 4  4  2

2 4 4 4 4  4  2

2 4 4 4 4  4  2

1 2 2 2 2  2  1

⎤
⎥⎥⎥⎥⎥⎥⎦

→

⎡
⎢⎢⎢⎢⎢⎢⎣

1  2  2  2  2  2  1

4  8  8  8  8  8  4

2  4  4  4  4  4  2

4  8  8  8  8  8  4

2  4  4  4  4  4  2

4  8  8  8  8  8  4

1  2  2  2  2  2  1

⎤
⎥⎥⎥⎥⎥⎥⎦

→

⎡
⎢⎢⎢⎢⎢⎢⎣

1 4 2 4 2 4 1

4 16 8 16 8 16 4

2 8 4 8 4 8 2

4 16 8 16 8 16 4

2 8 4 8 4 8 2

4 16 8 16 8 16 4

1 4 2 4 2 4 1

⎤
⎥⎥⎥⎥⎥⎥⎦

A.2. Surface to surface

In the calculations, the numerical solution is found by first look-

ing at the small area �A1 and calculating the view factor from this

small area to object 2. When this has been done for all the small

areas of object 1, then the total view factor can be found.

The normal vectors of  the surfaces are given as:

→ n1 =
[

xn1

yn1

zn1

]
→ n2 =

[
xn2

yn2

zn2

]

For each small are of the surfaces, �A1 and  �A2 we  look at the

position of the centres and  can thus  calculate the vector, �r, between

them:

�r =
[

x�A2
− x�A1

y�A2
− y�A1

z�A2
− z�A1

]
=
[

xr

yr

zr

]

The length of �r is:

r2 = x2
r + y2

r + z2
r

The angle, �1,  between the normal vector of surface 1, → n1,
and the vector, �r,  is:

cos(�1) = → n1 · �r
|→ n1|  · |→ r| =

[
xn1

yn1

zn1

]
·
[

xr

yr

zr

]
√

x2
n1

+ y2
n1

+ z2
n1

·
√

x2
r + y2

r + z2
r

The  angle, �2, between the normal vector of surface 2, → n2,
and the vector, �d,  is:

cos(�2) = →  n2 ·  (−�r)

|→ n2| ·  |→ r| =

[
xn2

yn2

zn2

]
·
[−xr

−yr

−zr

]
√

x2
n2

+ y2
n2

+ z2
n2

·
√

x2
r + y2

r +  z2
r

To optimise the calculation time when solving Eq. (12) the Simp-

son method is used – twice.
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Abstract

An application was developed for global and local thermal comfort long-term-evaluation 

based on building energy simulations. The application covers the whole room and facilitates 

uncertainty assessment. Methods prescribed by ISO7730 are used for calculating PMV and 

percentage dissatisfied because of draught, radiant asymmetry and floor temperature. 

Building simulation data are processed to evaluate local and global thermal comfort. Air 

velocities are found using flow elements; clothing levels are correlation with operative 

temperature and thermal radiant impacts calculated from a grid of view factors and for 

different orientations. 

Uncertainty and variations of input parameters and their effect on results are handled by 

making a number of calculations for each point while varying input.  

The thermal comfort application plots the results as a summation of the obtained categories 

and plots for deriving when, where and why thermal comfort in a room is categorised A-D, 

including how variations and uncertainty affect the results. 

Key words

Uncertainty, variations, room distribution,  PMV, PPD, draught rate 

Introduction

The objective of this study was to describe a method for the long-term evaluation of global 

and local thermal comfort based on the international standard for thermal environment ISO 

7730(European Committee for Standardization, 2005) and building energy simulations. The 

method is applicable for optimisation and for classification of the thermal indoor environment 

of a building. 
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The most widely used measures for thermal comfort were derived by P.O. Fanger and consist 

of a comfort measure for the body as a whole, supplemented with measures for discomfort 

caused by draught or parts of the body being exposed to temperature differences (Fanger, 

1970, 1981; Fanger et al., 1985, 1988; Olesen et al., 1973). The first ISO 7730 standard on 

thermal comfort published in 1984 was based on Fanger’s research. The standard describes 

how global thermal comfort can be assessed by calculating the predicted mean vote (PMV) or 

predicted percentage dissatisfied (PPD); and local thermal discomfort by calculating the 

draught rate (DR) and percentage dissatisfied (PD) caused by thermal radiant asymmetry, 

floor temperature and vertical air temperature gradient. 

In 2006, the standard was revised for the second time and the categories A, B and C were 

added to assess thermal comfort across the measures for global thermal comfort and local 

thermal discomfort. Methods for long-term evaluation were also added in the revision, though 

the long-term methods apply only to global thermal comfort and neither for local discomfort 

nor the summation of global and local by the new categories. 

For the last two decades, building energy simulation tools have been used for most buildings 

in the design or renovation phase to calculate and optimise their expected energy consumption.  

Thermal comfort is closely related to the energy consumption of buildings and it is therefore 

ideal to base an application for assessing long-term thermal comfort on building energy 

simulation tools. The consequences of energy optimisation on thermal comfort can thus 

quickly be assessed and any problems can be solved early in the design process. 

This paper presents an application for long-term evaluation of global and local thermal 

comfort by applying ISO 7730 and describes how results from a building energy simulation 

tool are processed in the calculations of thermal comfort. Some of the parameters, for 

calculating thermal comfort, vary in the room and others vary with the orientation of the 
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person. Some of the parameters are more uncertain than others. The application deals with all 

this and gives a precise and detailed picture of the thermal comfort in a room. 

The application takes the evaluation a step further than ISO 7730 by including a long-term 

evaluation of the whole room for both global thermal comfort and local thermal discomfort, 

and moreover it assesses the effects of uncertainty and variations on the results. 

An application for long term thermal comfort simulation

A way to improve thermal comfort in buildings is to improve the simulation of thermal 

comfort. Better simulations make it possible to optimise buildings for thermal comfort, to 

predict and deal with problems before they occur in real life. 

The ideal application for simulation of thermal comfort would calculate PMV, PPD, DR and 

PD caused by floor temperature, vertical air temperature gradient and radiant asymmetry, as 

described in ISO 7730. The ideal application would make it possible to both get an overview 

and to go deeper into the results. 

The ideal application should summarise the results for easy comparison of different building 

designs and the application should deal with and visualise the uncertainty of the results caused 

by uncertainties and variations in the input.  

For optimisation of a building design, the application should make it possible to find out: 

what causes problems with thermal comfort, when problems with thermal comfort occur and 

where in the room is there a risk of poor thermal comfort. 

Last but not least, the application should have a calculation time comparable to building 

energy simulation tools, which will make it possible to run a number of simulations in an 

optimisation process of a building. 
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ISO 7730

ISO 7730 describes how thermal comfort can be assessed for a building by using the 

equations derived by P. O. Fanger for both global thermal comfort and local thermal 

discomfort. 

Global thermal comfort is calculated for the body as a whole and is based on the body’s heat 

balance: heat production vs. heat loss to the surroundings. The relation between people’s 

thermal sensation and the heat balance is found through tests in a climate chamber and is 

expressed by PMV and PPD. 

Local thermal discomfort can be caused by draught, floor temperature and temperature 

differences. Local thermal discomfort is expressed by the percentage of people being bothered 

or dissatisfied. Draught dissatisfaction is expressed by the draught rate, DR, while 

temperature dependent causes are expressed by percentage dissatisfied, PD. 

Calculating both global and local thermal comfort gives five different measures in each point. 

The number of dissatisfied given by the five measures should not be summed, as the same 

persons are often sensitive to more impacts. Instead, the total evaluation is done by 

categorising the indoor climate through criteria for the five measures as shown in Table 1. 

Table 1 

Category

Global thermal comfort Local thermal discomfort

PMV PPD DR

PD caused by
vertical air 
temperature 
difference

floor 
temperature

radiant 
asymmetry

% % % % %
A -0.2 < PMV < 0.2 < 6 < 10 < 3 < 10 < 5
B -0.5 < PMV < 0.5 < 10 < 20 < 5 < 10 < 5
C -0.7 < PMV < 0.7 < 15 < 30 < 10 < 15 < 10
D -0.7  PMV  0.7  15  30  10  15  10
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ISO 7730 prescribes the categories A, B and C. The authors supplemented these categories 

with a category D to cover situations outside the ranges of categories A, B and C. In other 

norms and standards, similar categories are used for categorising the indoor environment.  EN 

15251(CEN, 2007) covers the indoor environment more broadly by taking lighting and 

acoustics into consideration. EN 15251 names the categories I, II, III and IV, where category 

IV covers cases outside the limits of category III, as suggested by the authors for category D. 

EN 15251 has the same limits for global thermal comfort as ISO 7730, but the norm does not 

cover local thermal discomfort, though it states that local thermal discomfort should be taken 

into consideration referring to ISO 7730. 

ISO 7730 gives five methods for long-term evaluation of the thermal comfort. Method A 

calculates the number or percentage of hours that the criteria for PMV or operative 

temperature are not met. Methods B and C weight the hours outside the chosen criteria by a 

weighting factor which is a function of how many degrees or PPD’s, the range has been 

exceeded. Method D is the average of the PPD’s during the occupied hours and method E 

sums the PPD’s during the occupied hours.  

Compared with the features described in the previous section for a thermal comfort 

application, the standard ISO 7730 prescribes methods and levels for assessing both global 

thermal comfort and local thermal discomfort, but it lacks methods for long-term evaluation 

of local thermal discomfort, distribution in the room and assessment of uncertainties and 

variation effect on the results. 

The thermal comfort application

The calculation methods and functionalities of the developed application for thermal comfort 

evaluation are described by means of an example. 
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A building energy simulation was performed in BSim(Wittchen et al., 2013) for an office 

situated in Denmark. The office was placed at an intermediate floor and was ventilated by 

natural ventilation through two highly placed windows in the south wall. The east wall was 

fully glassed and would generate down draught when cold. A sketch of the room is shown in 

Figure 1. 

 

Figure 1 The room as simulated in BSim. Inside room dimensions: height 3 m, length 8 m, width 5 m. There were two openable windows, 

each with a controlled opening area at the top of up to 0.33 m2. The east wall was fully glassed. 

From the building energy simulation the following hourly results were used in the thermal 

comfort application: 

Inside and outside air temperatures

Surface temperatures

Inlet air velocities through the window openings

Opening area of the windows

Relative humidity

Besides these inputs, the application needs information on room geometry, including 

placement of the inlet openings. 

The application calculates thermal comfort in a horizontal grid for a seated or a standing 

person. In this example, a grid size of 0.5 m was used and a seated person was assumed. The 

grid had nodes in the centre line of both openable windows. Calculations were made for eight 
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different orientations of the person, to be able to assess how thermal comfort varies with the 

orientation. 

All input parameters are subject to uncertainties or variations and in order to consider this 

when calculating thermal comfort, a number of calculations were performed with varying 

input parameters. For each time step a variation sample was generated, containing the chosen 

number of variations for each parameter. The same sample set was used for the whole room at 

a given time step. To cover the variation space optimally, the statistical method Latin hyper-

cube was used for sampling sets of input parameters. The principle of Latin hyper-cube is 

explained in Figure 2. A sensitivity analysis on the number of variations was performed for 

the example and is presented later in the article. 

 

 

Figure 2 The principle of the Latin hyper-cube in a fictive case of two parameters and five samples. The samples are found as values between 

0 and 1. For each parameter the sample space is divided into five intervals (the number of samples) and one random value is then picked 

randomly for each of the intervals. The five sample pairs are taken in a way that each interval is chosen only once for each parameter. The 

sample values are converted to a parameter value based on the distribution for each parameter, here it is a normal distribution with mean = 

22.5, standard deviation = 1.5, minimum value = 21 and maximum value = 24. 
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Calculation of PMV and PPD

The global thermal comfort measures PMV and PPD are calculated from air temperature, air 

velocity, mean radiant temperature and relative humidity at the person’s position as well as 

the person’s clothing level and activity level. 

In the following, it is explained how these parameters are found, treated and used in the 

application for thermal comfort. 

Air temperature

Air temperature has a great influence on the thermal comfort in a room and it is therefore an 

important parameter in the application. 

The inside air temperature is a core parameter in building energy simulations and full mixture 

of the air in the room is assumed in the simulations. In reality, air temperature can vary both 

horizontally and vertically depending on ventilation system, size and geometry of the room. 

In the example, the air temperature was varied to depict the horizontal variation that might 

occur in the room. The following parameters were used for the variation of air temperature: 

Distribution:  
Standard deviation, :
Mean, : 
Min:  
Max: 

Normal 
1°C 
Value from building simulation  

  – 1.5°C 
 + 1.5°C

 

Air velocity

Air velocity increases the heat transfer by convection and thereby influences thermal comfort 

of a person. 

Air velocities are calculated by flow elements from the values of: velocities in inlet openings, 

opening area, surface temperatures, inside and outside air temperatures. A tool was developed 
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by the authors for calculating air velocities on a long-term basis using flow elements(Vorre et 

al., 2014). Flow elements have the advantage compared with CFD that the calculation in a 

given point is independent of a grid and this makes it possible to calculate velocities only in 

points of interest, which lowers calculation time and makes long term simulations possible.  

In the example, the chosen grid size for thermal comfort simulation was used in three 

dimension and air velocities were calculated in each node.  

Each flow element was handled individually and if more flow elements affected the node, the 

highest of the calculated velocities in the node was used. The number of flow elements 

colliding in a point was used as a measure of the uncertainty of the results. 

In each column from floor to the top of the occupied zone, the mean and the maximum 

velocities were found together with the highest number of colliding flow elements. The 

principle for maximum velocity is shown in Figure 3. As input for the calculations of air 

velocities were used the results from the building simulation and variation was applied 

afterwards. 

 

Figure 3 Air velocities are calculated in the nodes of a grid structure and the highest value in each column is found. 

The calculated air velocities have a high uncertainty as several parameters can affect the flows 

in a room e.g. curtains, furniture or colliding airflows. To depict the varying uncertainty due 
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to more flow elements in the same point, the number of colliding flow elements was used to 

set the standard deviation of the normal distribution. 

The following parameters were used for the variation of air velocities, where “x” is the 

maximum number of colliding flows in the column: 

Distribution:  
Standard deviation, :
Mean, : 
Min:  
Max: 

Normal 
0.01 · x2 + 0.01 (x = 1 0.02,  x = 2 0.05, x = 3 0.1)   
Mean velocity for the column  
0 m/s 
Maximum velocity for the column

Mean radiant temperature

Mean radiant temperature is defined as that uniform temperature of a black enclosure which 

would result in the same heat loss by radiation from a person as the actual enclosure being 

studied. 

Mean radiant temperature will vary in a room, both with the position and with the orientation 

of the person. Emissivity and reflections have been disregarded and mean radiant temperature 

calculated as: 

 

Where  is the mean radiant temperature in kelvin,  is the temperature of surface i in 

kelvin and  is the view factor between the person and surface i.View factors 

between the surfaces in the room and a person are calculated in each node in the grid for eight 

orientations of the person. View factors are calculated by numerical integration over each 

surface, where a person’s projected area factor is modelled by the algorithm developed by 

Rizzo et al(Rizzo et al., 1991). The method is described in detail in an earlier work by the 

authors(Vorre et al., 2015). As view factors do not change over time, they only need to be 

calculated once for a room-geometry and not at every time step as the rest of the calculations. 
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Surface temperatures are calculated by building simulations and are considered relatively 

certain, though glass temperatures can be a problem depending on calculation methods of the 

simulation tools. 

Variations in mean radiant temperature are simulated by varying surface temperatures to take 

variations over the surface into consideration. 

Distribution:  
Standard deviation, :
Mean, : 
Min:  
Max: 

Normal 
0.3°C   
Surface temperatures found by building simulation  

  – 1°C 
  + 1°C

Relative humidity

Relative humidity only influences thermal comfort very little when looking at conditions 

likely to occur in offices, schools etc.  

The humidity of the air in a room is calculated by building energy simulation tools and the 

results are considered as having high certainty. Full mixture of the air is assumed in the 

simulations, though in reality some variation can occur e.g. due to plumes of ventilation air. 

In the example the relative humidity was varied to depict the horizontal variation that could 

occur in the room. The following parameters were used for the variation of relative humidity: 

Distribution:  
Standard deviation, :
Mean, : 
Min:  
Max: 

Normal 
5% 
Value from building simulation  
20% 
70%

Clothing level

Clothing is the heat insulation between a person’s skin and the surroundings, and it has a high 

impact on thermal comfort. Clothing insulation is measured in in  or clo, where 1 clo 

equals 0.165 in .  
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In the experiments that P.O. Fanger used for developing the equations for PMV and PPD, the 

test persons have very strictly measured clothing insulation(Fanger, 1970). From the 

experiments it was found that under the same thermal conditions and with the same clothing 

insulation the number of dissatisfied will not get below 5% even at optimum conditions, 

because people have different thermal preferences. If people had been asked to adjust their 

clothing in order to obtain thermal comfort, the number of dissatisfied would presumably be 

lower and maybe it would be possible to satisfy all. 

Knowledge of clothing insulation in real life is needed for simulation of thermal comfort on a 

long-term basis. The ASHRAE RP-884 database(de Dear and Brager, 1998) was used by the 

authors to find a relation between clothing insulation in real buildings and a thermal 

parameter that is known from building energy simulations (Vorre and Jensen, 2014). The 

current operative temperature, top, was found to be the best parameter and the relations 

between operative temperature and mean clothing insulation for buildings with and without 

cooling are given in Equation 1 and Equation 2. 

With cooling: 

Equation 1 

 

Without cooling:  

Equation 2 

 

For both building types, it was found that a minimum clothing level is reached at 25°C. 
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The data in the database RP-884 are from real working environments where people had some 

degree of freedom in their choice of clothing. From the above equations it is seen that people 

vary their clothing according to the operative temperature, but another interesting result from 

the study was, that even though people vary their clothing according to operative temperature 

and - on average - also according to their thermal preference, no relation was found between 

clothing level and thermal comfort vote when looking at a given operative temperature. 

Actually, the same standard deviation in thermal comfort votes was found as in Fanger’s 

experiments in climate chambers with a strict dress code. This is probably because there are 

so many other reasons for the choice of clothing than just thermal comfort, e.g. fashion. It is 

concluded that the opportunity to adapt clothing according to thermal preference is being used 

by some, but an equal number of people choose clothing that does not get them closer to 

thermal comfort.  

As variation in clothing at a given operative temperature did not affect the thermal comfort 

vote, it was chosen not to make variations in clothing in the application, because clothing 

varies when variations are done for the operative temperature. 

In the example, clothing level was calculated using Equation 2. 

Activity level

Activity level equals the heat production of the body minus effective mechanical work (W). 

The activity level has a high impact on thermal comfort. The activity level or metabolic rate 

(M) is measured in either W/m2 or met where 1 met equals 58 W/m2.  

The effective mechanical work by a person (W) can be regarded as 0 for typical office work, 

sedentary tasks or low activity tasks. 
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ISO 7730 provides a table for estimation of metabolic rate depending on activity. For office 

work, it ranges between 1.0 met (seated, relaxed) and 1.2 met (sedentary activity e.g. office 

and school). 

The uncertainty on metabolic rate is very high, both because it is difficult to measure and 

estimate for a given situation, but also because the metabolic rate for the same activity varies 

between people. Uncertainty on metabolic rate is typically around 50% but can be as high as 

100% (Parsons and Hamley, 1989). A difference of just 15% of metabolic rate can easily lead 

to a difference of 0.3 of the calculated PMV (Havenith et al., 2002). 

In the example, the activity level was varied with the following distribution and parameters: 

Distribution:  
Standard deviation, :
Mean, : 
Min:  
Max: 

Normal 
0.05 
1.2 
1.0 
1.4 

Draught rate

Draught is probably what causes most complaints about the indoor environment. Draught rate 

is a measure of the percentage dissatisfied by draught and is calculated from the air velocity, 

turbulence intensity and air temperature. 

Air velocity

Air velocity has a high impact on the sensation of draught. 

The air velocity for calculation of draught risk is found in the same way as for PMV. The 

following parameters were used for the variation of air velocities, where “x” is the maximum 

number of colliding flows in the column: 

Distribution:  
Standard deviation, :
Mean,: 
Min:  
Max: 

Normal 
0.01 · x2 + 0.01 (x = 1 0.02,  x = 2 0.05, x = 3 0.1)   
Maximum velocity for the column  
0 m/s 
2 ·  
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When doing the calculations, the same random value is used for calculating air velocities for 

both global thermal comfort and draught risk, only the mean values, standard deviation and 

min/max values are changed. This ensures correlation between calculated values for global 

thermal comfort and draught risk. 

Turbulence intensity

Turbulence intensity affects the sensation of draught.  

A turbulence intensity of 40% was used in the example. 

Air temperature

Draught rate is affected by the air temperature. 

The application uses the air temperature in the room for the calculations of draught rate and 

adopts the same variations. 

Vertical air temperature difference

The thermal comfort application does not cover percentage dissatisfied because of vertical air 

temperature difference. The foundation of building energy simulation tools is full mixture of 

the air and consequently it is impossible to simulate the vertical air temperature gradient.  

Floor temperature

Local thermal discomfort can be caused by both a too cold or too warm floor temperature. 

The calculation of dissatisfied due to floor temperature is only dependent on the floor 

temperature. 

The floor temperature found by the variations of surface temperatures as explained in the 

section on mean radiant temperatures is used in the example. 
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Radiant asymmetry

Asymmetry in thermal radiation can cause thermal discomfort. Radiant asymmetry is defined 

as the difference in mean radiant temperature between two sides of small plate. For a vertical 

asymmetry, the highest discomfort occurs between left - right side, whereas front – back 

causes less discomfort. 

Radiant asymmetry is found by calculating mean radiant temperature for each side of a small 

plate placed vertically or horizontally in the centre of the person. The same numerical method 

as used for mean radiant temperature of a person is used for calculation of view factors to 

each side of a small vertical and a small horizontal plate. A more detailed description of the 

calculations is given in an earlier article by the authors(Vorre et al., 2015), where radiant 

asymmetries calculated for the small plates are compared with calculations using the same 

model of a person as used for calculating mean radiant temperature. Radiant asymmetry 

calculated with a model of a person gives a better picture of the temperatures felt by the 

person than the plates, but it would require a new correlation with percentage dissatisfied, PD. 

In the example, varying surface temperatures were used for calculating radiant asymmetry and 

the calculations were performed in all nodes in the room and for the eight orientations of the 

person. 

Output and results from the thermal comfort application

For each hour of the year, four measures of thermal comfort are calculated: PPD, DR, PD 

caused by floor temperature and PD caused by radiant asymmetry. For each measure, the 

resulting category, A, B, C or D, is found together with the aggregate category. The 

calculations are performed in a grid and for a number of orientations. Furthermore, all the 

calculations are performed a number of times with variations on input parameters to take 
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uncertainty into consideration. The result is a probability distribution between the four 

categories in Table 1 for each node, each orientation and each hour. An example of 

distribution is given in Table 2. 

Table 2 

A B C D
13% 19% 68% 0%

 

To get an overview, the mean values of orientation, the room or time were calculated 

depending on the focus. The mean values of all occupied hours of the whole year, the whole 

room and all orientations were used for a sensitivity analysis for the number of variations 

performed for the room in the example. 

Whole year calculations were made with 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 500 and 

1000 variations in each point and for each orientation. The distributions between categories 

for each point and orientation were compared with the distributions found using 1000 

variations. The results of the comparisons are shown in Figure 4 as a mean of the absolute 

differences for each calculation and as a mean of the difference in per cent for each 

calculation. 
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Figure 4 Sensitivity analysis of the number of variations made in the calculations. To the left, the absolute difference is shown and to the 

right, the difference is shown in percentage. All numbers are compared with results by 1000 variations. 

The greatest effect of adding more variations is seen at the low number of variations, but as 

the number of variations affects the calculation time linearly, it is worth considering the gain 

in accuracy by using e.g. 200 instead of 100 variations. 

The results presented in this paper are found from the calculations using 1000 variations. 

Overview

To give an overview of the results, the distribution between categories was averaged for each 

hour. Position in the room and orientation of the person is thereby regarded as variations. For 

each hour, the category for respectively 5%, 25%, 50%, 75% and 95% quantiles of the 

calculations is found. In Table 3 the categories for the five quantiles are shown if assuming 

the distribution in Table 2. 

Table 3 

5% 25% 50% 75% 95%
A B C C C

 

By counting the number of hours in each quantile for each of the four categories, a summary 

for the whole year can be made as a bar plot for all hours or all occupied hours as seen for the 

example in Figure 5.  
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Figure 5 Percentage of hours in each category. The top bar shows the category in the best 5% of the calculations in each hour; the next bar 

shows the best 25%. The middle bar shows the 50% quantile or the median and represents approximately the mean of the calculations. The 

bottom bars shows the 75% and 95% quantiles in each hour.  

Figure 5 gives an overview of the percentage of hours in each category and how much the 

results are affected by variations in the input. If the five bars are alike, the thermal comfort is 

robust to the variations; if they differ, the thermal comfort is sensitive to the variations. 

The 50% quantile, or the median, approximately represents the mean of the results. For the 

example 43% of the occupied hours were in category A for the 50% quantile. Variations in 

inputs could cause the percentage to rise to more than 60% or fall to 10% or even 0%.  

Categories A and B were most sensitive to the variations. 

Floor plan with plot of thermal comfort

The distribution of thermal comfort in the room is shown as a floor plan with plot of the 

categories. The probability distributions for each category are averaged over time and 

orientation for each node in the room.  

In Figure 6, categories are plotted for the whole year in the occupied hours. The big plot 

shows the median or 50% quantile of the results and smaller plots show quantiles of the 

results to assess the uncertainty. 
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Figure 6 Floor plan of the room with plot of thermal comfort category for the median of the calculations for occupied hours of the whole 

year. To the right are plots for 5%, 25%, 75% and 95% quantiles. 

The example showed that the entire room has thermal comfort of category B for the median of 

the results of all occupied hours. The small plots of quantiles show that the variations in input 

can cause thermal comfort to improve to category A or to drop to category C or even D in the 

entire room. 

Time plot

The variation of thermal comfort over time is illustrated by calculating the hourly distribution 

between categories for shorter periods, months / weeks / days, using the same principles as for 

the bars in Figure 5. The results are shown as curves for the median of results, 25% and 75% 

quantiles. Figure 7 shows a plot of monthly values and Figure 8 shows a plot of weekly 

values. 
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Figure 7 Graphs showing percentage of occupied hours in each category. Dashed lines represent 25% and 75% quantiles. Calculations are 

made for each month.  

Figure 7 shows that thermal comfort is best in the spring and autumn months, and that there 

are problems in the summer months, where most hours are in either category C or D.  The 

dashed lines representing 25% and 75% quantiles show that the uncertainty of categories are 

highest in winter, where category A and B are both able to go from nearly 0% to 100% of the 

occupied hours. 
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Figure 8 Graphs showing percentage of occupied hours in each category. Dashed lines represent 25% and 75% quantiles. Calculations are 

made for each week. 

Figure 8 expresses the fluctuations between the weeks and gives a more detailed view than  

Figure 7. The room in the example mainly experiences poor thermal comfort in summer, but 

there is also a week in the late spring, when most hours are in catorgory C. 

Separation of thermal comfort measures

The categories shown in the above figures are found by taking the worst category of PPD, 

DR, PD caused by floor temperature and PD caused by radiant asymmetry in each calculation. 

To be able to optimise a building design, it is vital to know the cause of a problem.  Therefore 

it is possible to structure the results according to the four measures as shown in Figure 9. 

 

Figure 9 Distribution of hours in each category divided into the four criteria used in the tool. 

It is clear from Figure 9 that in the example radiant asymmetry do not create problems and 

that the floor temperature is the main cause of comfort being in categories C and D. The 

uncertainty in inputs has the greatest effect on draught rate and PPD, while only little effect 

on the category caused by floor temperature. Direct radiation from the sun is not taken into 

consideration in the application at the moment, which is probably the cause of the good 

results for radiant asymmetry. 
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Variation in the room over time

To get an overview of where in the room and when the different categories are achieved, plots 

of the floor can be made for each month, week, day or even each hour. Plots for every month 

are shown in Figure 10. 

 
Figure 10 Plots of the floor plan with thermal comfort categories for each month. 

From Figure 10 it is seen that from May to September the whole room is in category C, 

though D in July, while problems occur closest to the glassed façade during the remaining 

months. 

Variations of the four measures over time

The four criteria for thermal comfort all vary during the year and to get an overview of when 

the different criteria cause problems, curves for percentage of time can be drawn individually. 

In Figure 11, the percentages of hours are calculated for each month. 
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Figure 11 Curves showing the percentage of hours in each category. Dashed lines refer to 25% and 75% quantiles.  

Figure 11 shows that PPD is poor in the summer, but also somewhat in winter. Floor 

temperature is only a problem in the warmer months and draught only occurres in winter. 

Radiant asymmetry is not a problem at all. 

Orientation

In the example, the calculations were made for eight different orientations of the person and 

the differences between them are shown in Figure 12. 
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Figure 12 Plots of the floor plan for the eight orientations of the person. To the left is the total categories for week 8 and to the right the 

categories for PPD in week 26 

The plots show that thermal comfort varied with the orientation of the person, though the 

difference is small. For most weeks, the difference is close to non-existing. 

The application makes it possible to zoom in on the results in all kinds of ways by combining 

the shown plots. All plots can be made for the resulting category or each measure individually, 

for a specific orientation or all together, for the whole year, each month or less. For all hours 

or only occupied hours, etc. 

Discussion

The application is based on the equations developed by Fanger. Other measures of the thermal 

environment are adaptive thermal comfort and productivity. Implementation of these could 

very well be the next step in the development of the application. The focus on thermal 

comfort through Fanger’s perspective was chosen because it gives the most information that 

can be used in an optimisation process of a building, because the measures make it possible to 

see potential causes of poor thermal comfort. 

Uncertainty is dealt with by making a number of variations in the input and showing the 

results including quantiles of results. This gives higher calculation times and might confuse an 

end user of a building; but it is considered very important that uncertainties can be 

communicated to end users because they need to be aware that these kinds of calculations are 

subject to uncertainties. The authors have endeavoured to optimise the presentation of the 

results so that they are comprehensible also to nontechnical persons. 

The room temperature is used in the application for draught risk assessment, and the next step 

in the development could be to calculate the local temperature by means of the flow elements. 

This would give an even better estimation of the draught risk.  
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A shortcoming of the application is that it does not consider direct radiation from the sun. To 

do so, a method is needed to calculate how big a part of a person would be hit by the radiation 

at a specific point in the room.  

Conclusion

The standard for thermal comfort was first issued in 1984 but the application presented in this 

article is the first tool to actually make it possible to simulate long-term thermal comfort for a 

room. This application gives an overview for comparison of different designs and makes it 

possible to structure the results in order to optimise a building. 
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