Principles and Practice of Cleaning in Place

Graham Broadhurst BRIGGS of Burton INC

Contents

- CIP/SIP Definitions / Function
- Principles of CIP
- CIP Detergents
- CIP Systems
- Vessel CIP
- Mains CIP
- Monitoring/Control

CIP / SIP - Definition

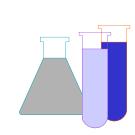
• CIP = Cleaning in Place

To clean the product contact surfaces of vessels, equipment and pipework in place.
 i.e. without dismantling.

- SIP = Sterilise in Place
 - To ensure product contact surfaces are sufficiently sterile to minimise product infection.

How CIP Works

Mechanical


– Removes 'loose' soil by Impact / Turbulence

- Chemical
 - Breaks up and removes remaining soil by Chemical action
- Sterilant/Sanitiser
 - 'Kills' remaining micro-organisms (to an acceptable level)

Factors affecting CIP

- Mechanical
- Chemical

- Temperature
- Time

CIP Operation

- PRE-RINSE
 - Mechanical Removal of Soil
- DETERGENT
 - Cleaning of Remaining Soil
 - Caustic, Acid or Both
- FINAL RINSE
 - Wash Residual Detergent/Soil
- STERILANT/SANITISER
 - Cold or Hot

Typical CIP Times

	Vessel CIP	Mains CIP
Pre-Rinse	10 to 20 mins	5 to 10 mins
Caustic Detergent	30 to 45 mins	20 to 30 mins
Rinse	10 to 15 mins	5 to 10 mins
Acid Detergent	20 to 30 mins	15 to 20 mins
Rinse	15 to 20 mins	10 to 15 mins
Sterilant	10 to 15 mins	5 to 10 mins

Typical CIP Temperature

- Brewhouse Vessels
- Brewhouse Mains
- Process Vessels
- Process Mains
- Yeast Vessels
- Yeast Mains

Hot 85°C Hot 85°C $Cold < 40^{\circ}C$ Hot 75°C Hot 75°C Hot 75°C

CIP Detergent -Requirements

- Effective on target soil
- Non foaming or include anti-foam
- Free rinsing / Non tainting
- Non corrosive Vessels/pipes, joints
- Controllable Conductivity
- Environmental

Caustic Detergents

- Advantages
 - Excellent detergency properties when "formulated"
 - Disinfection properties, especially when used hot.
 - Effective at removal of protein soil.
 - Auto strength control by conductivity meter
 - More effective than acid in high soil environment
 - Cost effective

- Disadvantages
 - Degraded by CO₂ forming carbonate.
 - Ineffective at removing inorganic scale.
 - Poor rinsability.
 - Not compatible with Aluminium
 - Activity affected by water hardness.

Acid Detergents

- Advantages
 - Effective at removal of inorganic scale
 - Not degraded by CO2
 - Not affected by water hardness
 - Lends itself to automatic control by conductivity meter.
 - Effective in low soil environment
 - Readily rinsed

- Disadvantages
 - Less effective at removing organic soil.
 New formulations more effective.
 - Limited biocidal properties -New products being formulated which do have biocidal activity
 - Limited effectiveness in high soil environments
 - High corrosion risk Nitric Acid
 - Environment –
 Phosphate/Nitrate discharge

BRIGGS

Detergent Additives

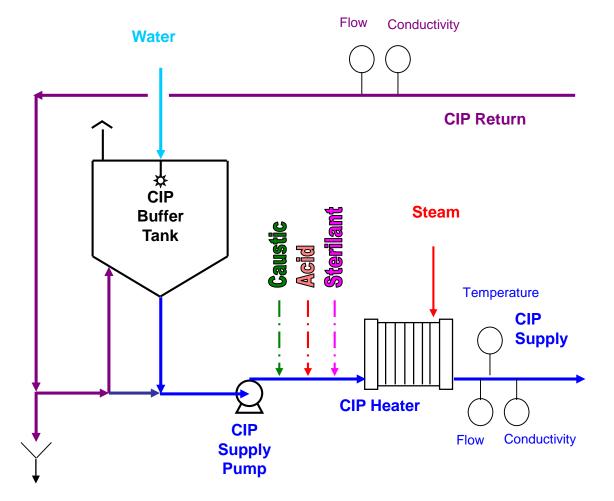
- Sequestrants (Chelating Agents)
 - Materials which can complex metal ions in solution, preventing precipitation of the insoluble salts of the metal ions (e.g. scale).
 - e.g. EDTA, NTA, Gluconates and Phosphonates.
- Surfactants (Wetting Agents)
 - Reduce surface tension allowing detergent to reach metal surface.

Sterilant / Sanitiser Requirements

- Effective against target organisms
- Fast Acting
- Low Hazard
- Low Corrosion
- Non Tainting
- No Effect On Head Retention
- Acceptable Foam Characteristics

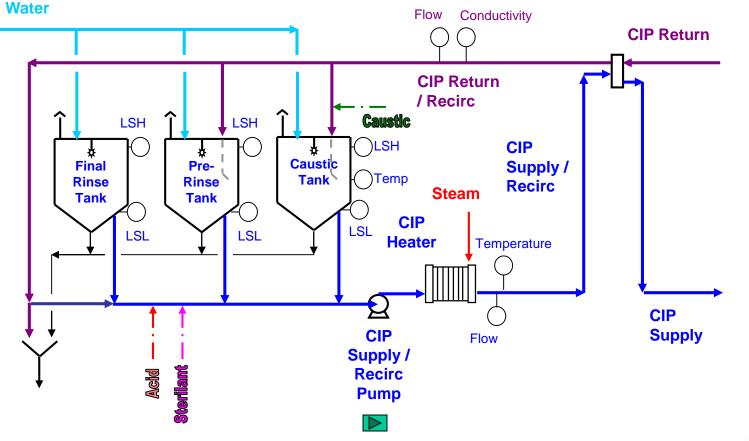
Sterilants / Sanitisers

- Chlorine Dioxide
- Hypochlorite
- Iodophor
- Acid Anionic
- Quaternary Ammonium
- Hydrogen Peroxide
- PAA (Peroxyacetic Acid) 200-300 ppm

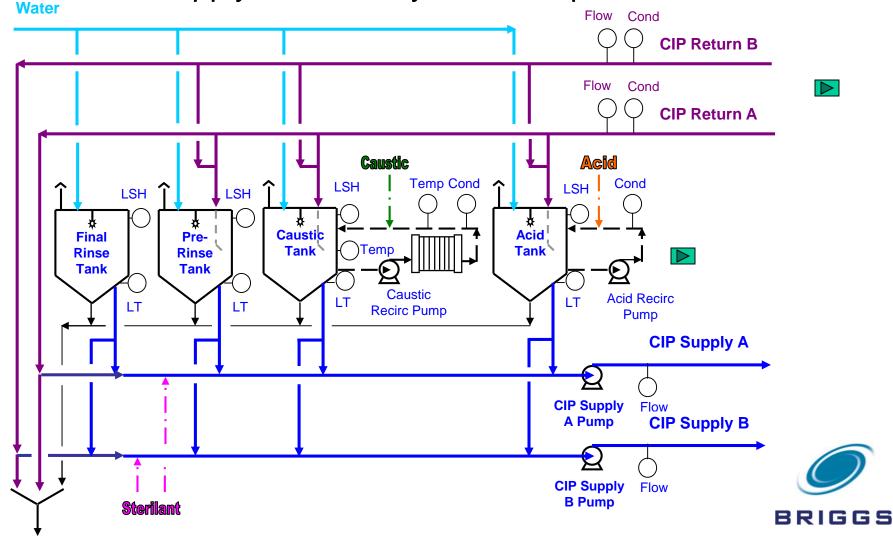


CIP Systems

- Single Use
 - Water/Effluent/Energy costs
- Recovery
 - Detergent Recovery
 - Rinse/Interface Recovery
- Tank Allocation
- Number of Circuits



Single Use CIP Systems


Recovery CIP Systems 1 x Supply – 3 Tank System

Recovery CIP Systems

2 x Supply – 4 Tank System – Separate Recirc

Recovery CIP System

Single Use vs Recovery

- Single Use CIP
 - Low Capital Cost
 - Small Space Req.
 - Low Contamination Risk
 - Total Loss
 - High Water Use
 - High Energy Use
 - High Effluent Vols.
 - Longer Time/Delay
 - Use for Yeast

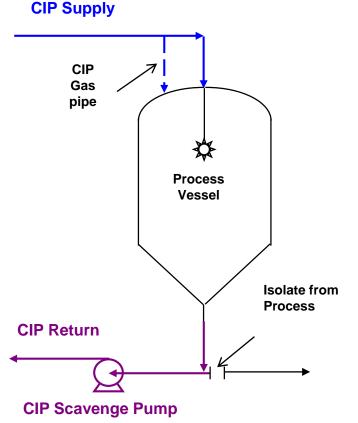
- Recovery CIP
 - High Capital Cost
 - Large Space Req.
 - Higher Contamination Risk
 - Low Loss
 - Low Water Use
 - Low Energy Use
 - Low Effluent Vols.
 - Shorter Time/Delay
 - Use for Brewhouse & Fermenting

CIP Systems CIP Tank Sizing

- Pre-Rinse
 - CIP Flow x Time
- Detergent
 - Vol of CIP in Process Mains & Tank
 + Losses
- Final Rinse
 - Flow x Time Water Fill

CIP Systems Practical Points

- CIP Supply Pump
- Recirculation
- Shared/Common with CIP Supply, or
- Dedicated to Tank
- CIP Supply Strainer
- CIP Return Strainer
- CIP Tank Connections


Types of CIP

- VESSEL CIP
 - Sprayhead Selection
 - Scavenge Control
- MAINS CIP
 - Adequate Velocity
 - Total Route Coverage
- BATCH/COMBINED CIP
 - Complex Control
 - Time Consuming

Vessel CIP

- Flow of CIP fluid from CIP supply to vessel sprayhead
- Internal surfaces cleaned by spray impact / deluge
- Return from vessel by CIP scavenge (return) pump

Vessel CIP - Sprayheads

- Static Sprayballs

 High Flow / Low Pressure
- Rotating Sprayheads

 Low Flow / Medium Pressure
- Cleaning Machines
 - Low Flow / High Pressure
 - High Impact

Vessel CIP – Sprayballs

- Advantages
 - No moving parts
 - Low Capital Cost
 - Low pressure CIP supply
 - Verification by Flow
- Disadvantages
 - High Water & Energy Use
 - High Effluent volumes
 - Limited throw Small vessels
 - Spray Atomises if Pressure High
 - No impact long CIP time and/or high detergent strength
 - Higher absorption of CO₂ by caustic

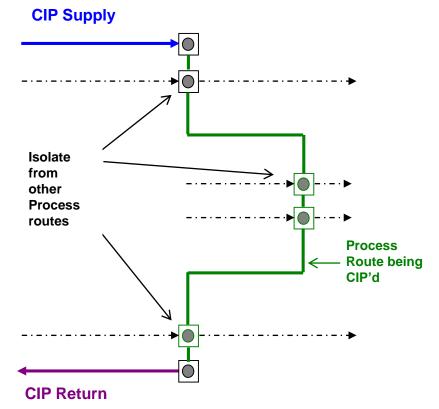
Vessel CIP – Rotary Sprayheads

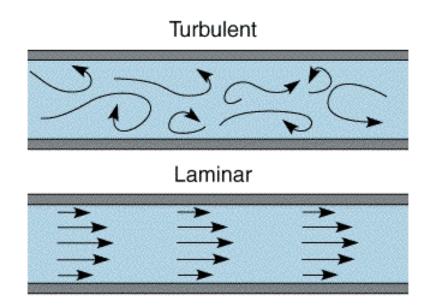
- Advantages
 - Not too Expensive
 - Some Mechanical Soil Removal
 - Lower Flow
 - Reasonable Water/Energy Usage
 - Reasonable Effluent
- Disadvantages
 - Moving parts
 - Limited throw Small vessels
 - Possible blockage
 - Rotation verification
 - Supply strainer

Vessel CIP – Cleaning Machines

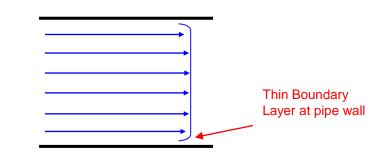
- Advantages
 - High impact, aggressive cleaning
 - Good for heavy duty cleaning
 - Low water/energy use
 - Low effluent
 - Effective in large vessels
 - Lower absorption of CO2 by caustic
 - Lower Flow means smaller Pipework

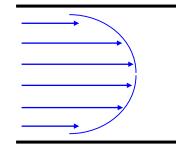
Vessel CIP – Cleaning Machines


- Disadvantages
 - Expensive
 - Moving parts
 - High pressure CIP supply pump
 - Possible blockage
 - Rotation verification
 - Supply strainer


Mains CIP

- Flow of CIP fluid from CIP supply, through process pipework and back to CIP set
- The entire process
 route must see
 turbulent CIP Flow
- No/Minimal Tees/dead legs
- Isolate from other process lines


Mains CIP Turbulent & Laminar Flow



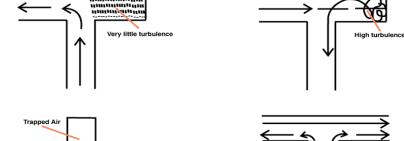
Mains CIP Turbulent & Laminar Flow

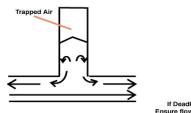
- Turbulent Flow
 - Flat velocity profile
 - Thin Boundary layer
 - Effective CIP
- Laminar Flow
 - Streamline flow
 - Velocity profile, faster at centre
 - Ineffective CIP

Mains CIP

- Turbulent Flow –
 Re > 3000
- Minimise Boundary layer –
 Laminar layer on internal pipe wall
- Minimum CIP velocity (in process pipe) \geq 1.5 m/s.
- Excessive velocity

 High Pressure drop / Energy input

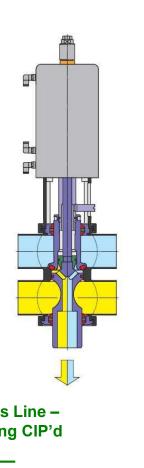

Mains CIP – CIP Flow

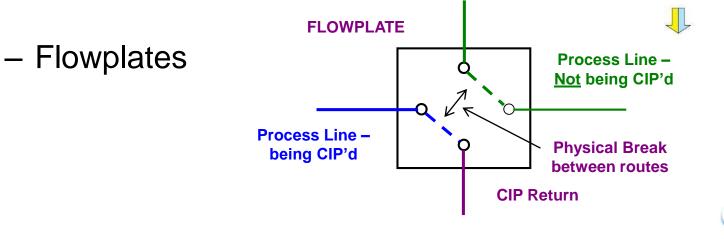

Process Pipe dia (mm)	Minimum CIP Flow (m ³ /h)	CIP Supply / Return dia (mm)
25	2.1	25
38	5.2	38
50	10	50
65	16	65
75	24	<mark>65</mark>
100	42	75
125	70	100
150	100	125
200	170	150
250	280	200
300	400	200
350	520	250
400	700	250
Min CIP Velocity	1.5	m/s minimum
Based on o/d tube to 100 mm and metric I/d above 100 mm.		

Process Pipework Design for CIP

- Ensure Total Route coverage
 - Avoid Split routes
 - Avoid Dead ends
 - Avoid Tees
 - Most Critical on Yeast & nearer packaging

ատատատա


If Deadlegs are unavoidable∙ Ensure flow directed i<u>nto</u> dead end Dead end is as <u>short</u> as possible - L/D = 1.5


Potential Trape for soil debris

Process Pipework Design for CIP

- Isolate CIP from Process
 - Mixproof Valves

BRIGGS

Batch/Combined CIP

- Combines CIP of
 - Vessel/s and
 - Pipework in one clean
- Why ?
 - Pipework too large for 'mains' CIP
 e.g. Brewhouse 200 to 600 mm.
 - Pipework linked to Vessel
 e.g. Recirculation Loop or EWH.

Batch/Combined CIP

- Supply of a batch volume of CIP to process vessel
- Internal recirculation of CIP within/through process vessel
- Transfer of CIP to next vessel
- Pumped return of CIP batch volume to CIP set.

CIP Monitoring & Control On-Line

- Detergent Temperature
- Detergent Strength Conductivity
- Return Conductivity
 - Detergent Start Interface
 - Detergent End Interface
 - Rinse Conductivity
- Return Flow
- Recirc/Return Time
- Supply Pressure

CIP Monitoring & Control Off-Line

- Visual Inspection
- Final Rinse return sampling
 - pH
 - Micro
 - ATP
- Vessel/Pipework swabs
 - pH
 - Micro
 - ATP

Principles and Practice of Cleaning in Place

